Operation and Maintenance Manual

1106D Industrial Engine

PJ (Engine)
Important Safety Information

Most accidents that involve product operation, maintenance and repair are caused by failure to observe basic safety rules or precautions. An accident can often be avoided by recognizing potentially hazardous situations before an accident occurs. A person must be alert to potential hazards. This person should also have the necessary training, skills and tools to perform these functions properly.

Improper operation, lubrication, maintenance or repair of this product can be dangerous and could result in injury or death.

Do not operate or perform any lubrication, maintenance or repair on this product, until you have read and understood the operation, lubrication, maintenance and repair information.

Safety precautions and warnings are provided in this manual and on the product. If these hazard warnings are not heeded, bodily injury or death could occur to you or to other persons.

The hazards are identified by the “Safety Alert Symbol” and followed by a “Signal Word” such as “DANGER”, “WARNING” or “CAUTION”. The Safety Alert “WARNING” label is shown below.

![WARNING]

The meaning of this safety alert symbol is as follows:

Attention! Become Alert! Your Safety is Involved.

The message that appears under the warning explains the hazard and can be either written or pictorially presented.

Operations that may cause product damage are identified by “NOTICE” labels on the product and in this publication.

Perkins cannot anticipate every possible circumstance that might involve a potential hazard. The warnings in this publication and on the product are, therefore, not all inclusive. If a tool, procedure, work method or operating technique that is not specifically recommended by Perkins is used, you must satisfy yourself that it is safe for you and for others. You should also ensure that the product will not be damaged or be made unsafe by the operation, lubrication, maintenance or repair procedures that you choose.

The information, specifications, and illustrations in this publication are on the basis of information that was available at the time that the publication was written. The specifications, torques, pressures, measurements, adjustments, illustrations, and other items can change at any time. These changes can affect the service that is given to the product. Obtain the complete and most current information before you start any job. Perkins dealers or Perkins distributors have the most current information available.

![WARNING]

When replacement parts are required for this product Perkins recommends using Perkins replacement parts.

Failure to heed this warning can lead to premature failures, product damage, personal injury or death.
Table of Contents

Foreword ... 4
Safety Section
Safety Messages .. 5
General Hazard Information 7
Burn Prevention .. 8
Fire Prevention and Explosion Prevention 9
Crushing Prevention and Cutting Prevention 11
Mounting and Dismounting 11
High Pressure Fuel Lines 11
Before Starting Engine .. 13
Engine Starting ... 13
Engine Stopping ... 14
Electrical System .. 14
Engine Electronics .. 15
Product Information Section
General Information .. 16
Model Views ... 17
Product Identification Information 20
Operation Section
Lifting and Storage .. 23
Gauges and Indicators .. 25
Features and Controls .. 26
Engine Diagnostics ... 32
Engine Starting ... 36
Engine Operation .. 39
Engine Stopping ... 40
Cold Weather Operation 42
Maintenance Section
Refill Capacities .. 46
Maintenance Interval Schedule 59
Warranty Section
Warranty Information .. 90
Index Section
Index ... 91
Foreword

Literature Information

This manual contains safety, operation instructions, lubrication and maintenance information. This manual should be stored in or near the engine area in a literature holder or literature storage area. Read, study and keep it with the literature and engine information.

English is the primary language for all Perkins publications. The English used facilitates translation and consistency.

Some photographs or illustrations in this manual show details or attachments that may be different from your engine. Guards and covers may have been removed for illustrative purposes. Continuing improvement and advancement of product design may have caused changes to your engine which are not included in this manual. Whenever a question arises regarding your engine, or this manual, please consult with your Perkins dealer or your Perkins distributor for the latest available information.

Safety

This safety section lists basic safety precautions. In addition, this section identifies hazardous, warning situations. Read and understand the basic precautions listed in the safety section before operating or performing lubrication, maintenance and repair on this product.

Operation

Operating techniques outlined in this manual are basic. They assist with developing the skills and techniques required to operate the engine more efficiently and economically. Skill and techniques develop as the operator gains knowledge of the engine and its capabilities.

The operation section is a reference for operators. Photographs and illustrations guide the operator through procedures of inspecting, starting, operating and stopping the engine. This section also includes a discussion of electronic diagnostic information.

Maintenance

The maintenance section is a guide to engine care. The illustrated, step-by-step instructions are grouped by service hours and/or calendar time maintenance intervals. Items in the maintenance schedule are referenced to detailed instructions that follow.

Recommended service should be performed at the appropriate intervals as indicated in the Maintenance Interval Schedule. The actual operating environment of the engine also governs the Maintenance Interval Schedule. Therefore, under extremely severe, dusty, wet or freezing cold operating conditions, more frequent lubrication and maintenance than is specified in the Maintenance Interval Schedule may be necessary.

The maintenance schedule items are organized for a preventive maintenance management program. If the preventive maintenance program is followed, a periodic tune-up is not required. The implementation of a preventive maintenance management program should minimize operating costs through cost avoidances resulting from reductions in unscheduled downtime and failures.

Maintenance Intervals

Perform maintenance on items at multiples of the original requirement. We recommend that the maintenance schedules be reproduced and displayed near the engine as a convenient reminder. We also recommend that a maintenance record be maintained as part of the engine’s permanent record.

Your authorized Perkins dealer or your Perkins distributor can assist you in adjusting your maintenance schedule to meet the needs of your operating environment.

Overhaul

Major engine overhaul details are not covered in the Operation and Maintenance Manual except for the interval and the maintenance items in that interval. Major repairs should only be carried out by Perkins authorized personnel. Your Perkins dealer or your Perkins distributor offers a variety of options regarding overhaul programs. If you experience a major engine failure, there are also numerous after failure overhaul options available. Consult with your Perkins dealer or your Perkins distributor for information regarding these options.

California Proposition 65 Warning

Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm. Battery posts, terminals and related accessories contain lead and lead compounds. Wash hands after handling.
Safety Section

Safety Messages

There may be several specific warning signs on your engine. The exact location and a description of the warning signs are reviewed in this section. Please become familiar with all warning signs.

Ensure that all of the warning signs are legible. Clean the warning signs or replace the warning signs if the words cannot be read or if the illustrations are not visible. Use a cloth, water, and soap to clean the warning signs. Do not use solvents, gasoline, or other harsh chemicals. Solvents, gasoline, or harsh chemicals could loosen the adhesive that secures the warning signs. The warning signs that are loosened could drop off of the engine.

Replace any warning sign that is damaged or missing. If a warning sign is attached to a part of the engine that is replaced, install a new warning sign on the replacement part. Your Perkins dealer or your distributor can provide new warning signs.

(1) Universal Warning

WARNING
Do not operate or work on this equipment unless you have read and understand the instructions and warnings in the Operation and Maintenance Manuals. Failure to follow the instructions or heed the warnings could result in serious injury or death.

Illustration 1

The Universal Warning label (1) is located on the left hand side of the valve mechanism cover base.
Safety Messages

Illustration 2
Location of labels
(1) Universal warning (2) Ether (3) Hand (High Pressure)

(2) Ether

WARNING
Do not use aerosol types of starting aids such as ether. Such use could result in an explosion and personal injury.

Illustration 3
Typical example
The ether warning label (2) is located on the cover of the inlet manifold.

(3) Hand (High Pressure)

WARNING
Contact with high pressure fuel may cause fluid penetration and burn hazards. High pressure fuel spray may cause a fire hazard. Failure to follow these inspection, maintenance and service instructions may cause personal injury or death.
The warning label for the Hand (High Pressure) (3) is located on the top of the fuel manifold.

General Hazard Information

Attach a “Do Not Operate” warning tag or a similar warning tag to the start switch or to the controls before you service the equipment or before you repair the equipment.

Wear a hard hat, protective glasses, and other protective equipment, as required.

Do not wear loose clothing or jewelry that can snag on controls or on other parts of the engine.

Make sure that all protective guards and all covers are secured in place on the engine.

Keep the engine free from foreign material. Remove debris, oil, tools, and other items from the deck, from walkways, and from steps.

Never put maintenance fluids into glass containers. Drain all liquids into a suitable container.

Obey all local regulations for the disposal of liquids.

Use all cleaning solutions with care.

Report all necessary repairs.

Do not allow unauthorized personnel on the equipment.

Ensure that the power supply is disconnected before you work on the bus bar or the glow plugs.

Perform maintenance on the engine with the equipment in the servicing position. Refer to the OEM information for the procedure for placing the equipment in the servicing position.

Pressure Air and Water

Pressurized air and/or water can cause debris and/or hot water to be blown out. This could result in personal injury.

The direct application of pressurized air or pressurized water to the body could result in personal injury.

When pressurized air and/or water is used for cleaning, wear protective clothing, protective shoes, and eye protection. Eye protection includes goggles or a protective face shield.

The maximum air pressure for cleaning purposes must be below 205 kPa (30 psi). The maximum water pressure for cleaning purposes must be below 275 kPa (40 psi).

Fluid Penetration

Pressure can be trapped in the hydraulic circuit long after the engine has been stopped. The pressure can cause hydraulic fluid or items such as pipe plugs to escape rapidly if the pressure is not relieved correctly.

Do not remove any hydraulic components or parts until pressure has been relieved or personal injury may occur. Do not disassemble any hydraulic components or parts until pressure has been relieved or personal injury may occur. Refer to the OEM information for any procedures that are required to relieve the hydraulic pressure.
Always use a board or cardboard when you check for a leak. Leaking fluid that is under pressure can penetrate body tissue. Fluid penetration can cause serious injury and possible death. A pin hole leak can cause severe injury. If fluid is injected into your skin, you must get treatment immediately. Seek treatment from a doctor that is familiar with this type of injury.

Containing Fluid Spillage

Care must be taken in order to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting and repair of the engine. Make provision to collect the fluid with a suitable container before any compartment is opened or before any component is disassembled.

- Only use the tools that are suitable for collecting fluids and equipment that is suitable for collecting fluids.
- Only use the tools that are suitable for containing fluids and equipment that is suitable for containing fluids.

Obey all local regulations for the disposal of liquids.

Burn Prevention

Do not touch any part of an operating engine. Allow the engine to cool before any maintenance is performed on the engine.
Fire Prevention and Explosion Prevention

All fuels, most lubricants, and some coolant mixtures are flammable.

Flammable fluids that are leaking or spilled onto hot surfaces or onto electrical components can cause a fire. Fire may cause personal injury and property damage.

After the emergency stop button is operated ensure that you allow 15 minutes, before the engine covers are removed.

Determine whether the engine will be operated in an environment that allows combustible gases to be drawn into the air inlet system. These gases could cause the engine to overspeed. Personal injury, property damage, or engine damage could result.

If the application involves the presence of combustible gases, consult your Perkins dealer and/or your Perkins distributor for additional information about suitable protection devices.

Remove all flammable combustible materials or conductive materials such as fuel, oil, and debris from the engine. Do not allow any flammable combustible materials or conductive materials to accumulate on the engine.

Store fuels and lubricants in correctly marked containers away from unauthorized persons. Store oily rags and any flammable materials in protective containers. Do not smoke in areas that are used for storing flammable materials.

Do not expose the engine to any flame.

Exhaust shields (if equipped) protect hot exhaust components from oil or fuel spray in case of a line, a tube, or a seal failure. Exhaust shields must be installed correctly.

Do not weld on lines or tanks that contain flammable fluids. Do not flame cut lines or tanks that contain flammable fluid. Clean any such lines or tanks thoroughly with a nonflammable solvent prior to welding or flame cutting.

Wiring must be kept in good condition. All electrical wires must be correctly routed and securely attached. Check all electrical wires daily. Repair any wires that are loose or frayed before you operate the engine. Clean all electrical connections and tighten all electrical connections.

Eliminate all wiring that is unattached or unnecessary. Do not use any wires or cables that are smaller than the recommended gauge. Do not bypass any fuses and/or circuit breakers.

Arcing or sparking could cause a fire. Secure connections, recommended wiring, and correctly maintained battery cables will help to prevent arcing or sparking.

Contact with high pressure fuel may cause fluid penetration and burn hazards. High pressure fuel spray may cause a fire hazard. Failure to follow these inspection, maintenance and service instructions may cause personal injury or death.

After the engine has stopped, you must wait for 60 seconds in order to allow the fuel pressure to be purged from the high pressure fuel lines before any service or repair is performed on the engine fuel lines.

Ensure that the engine is stopped. Inspect all lines and hoses for wear or for deterioration. The hoses must be correctly routed. The lines and hoses must have adequate support and secure clamps.

Oil filters and fuel filters must be correctly installed. The filter housings must be tightened to the correct torque. Refer to the Disassembly and Assembly manual for more information.
Use caution when you are refueling an engine. Do not smoke while you are refueling an engine. Do not refuel an engine near open flames or sparks. Always stop the engine before refueling.

Gases from a battery can explode. Keep any open flames or sparks away from the top of a battery. Do not smoke in battery charging areas.

Never check the battery charge by placing a metal object across the terminal posts. Use a voltmeter or a hydrometer.

Incorrect jumper cable connections can cause an explosion that can result in injury. Refer to the Operation Section of this manual for specific instructions.

Do not charge a frozen battery. This may cause an explosion.

The batteries must be kept clean. The covers (if equipped) must be kept on the cells. Use the recommended cables, connections, and battery box covers when the engine is operated.

Fire Extinguisher

Make sure that a fire extinguisher is available. Be familiar with the operation of the fire extinguisher. Inspect the fire extinguisher and service the fire extinguisher regularly. Obey the recommendations on the instruction plate.

Lines, Tubes and Hoses

Do not bend high pressure lines. Do not strike high pressure lines. Do not install any lines that are damaged.

Leaks can cause fires. Consult your Perkins dealer or your Perkins distributor for replacement parts.

Replace the parts if any of the following conditions are present:

- High pressure fuel line or lines are removed.
- End fittings are damaged or leaking.
- Outer coverings are chafed or cut.
- Wires are exposed.
- Outer coverings are ballooning.
- Flexible part of the hoses are kinked.
- Outer covers have embedded armoring.
- End fittings are displaced.

Make sure that all clamps, guards, and heat shields are installed correctly. During engine operation, this will help to prevent vibration, rubbing against other parts, and excessive heat.
Crushing Prevention and Cutting Prevention

Support the component correctly when work beneath the component is performed.

Unless other maintenance instructions are provided, never attempt adjustments while the engine is running.

Stay clear of all rotating parts and of all moving parts. Leave the guards in place until maintenance is performed. After the maintenance is performed, reinstall the guards.

Keep objects away from moving fan blades. The fan blades will throw objects or cut objects.

When objects are struck, wear protective glasses in order to avoid injury to the eyes.

Chips or other debris may fly off objects when objects are struck. Before objects are struck, ensure that no one will be injured by flying debris.

Mounting and Dismounting

Inspect the steps, the handholds, and the work area before mounting the engine. Keep these items clean and keep these items in good repair.

Mount the engine and dismount the engine only at locations that have steps and/or handholds. Do not climb on the engine, and do not jump off the engine.

Face the engine in order to mount the engine or dismount the engine. Maintain a three-point contact with the steps and handholds. Use two feet and one hand or use one foot and two hands. Do not use any controls as handholds.

Do not stand on components which cannot support your weight. Use an adequate ladder or use a work platform. Secure the climbing equipment so that the equipment will not move.

Do not carry tools or supplies when you mount the engine or when you dismount the engine. Use a hand line to raise and lower tools or supplies.

High Pressure Fuel Lines

WARNING

Contact with high pressure fuel may cause fluid penetration and burn hazards. High pressure fuel spray may cause a fire hazard. Failure to follow these inspection, maintenance and service instructions may cause personal injury or death.
The high pressure fuel lines are the fuel lines that are between the high pressure fuel pump and the high pressure fuel manifold and the fuel lines that are between the fuel manifold and cylinder head. These fuel lines are different from fuel lines on other fuel systems.

This is because of the following differences:

- The high pressure fuel lines are constantly charged with high pressure.
- The internal pressures of the high pressure fuel lines are higher than other types of fuel system.
- The high pressure fuel lines are formed to shape and then strengthened by a special process.

Do not step on the high pressure fuel lines. Do not deflect the high pressure fuel lines. Do not bend or strike the high pressure fuel lines. Deformation or damage of the high pressure fuel lines may cause a point of weakness and potential failure.

Do not check the high pressure fuel lines with the engine or the starting motor in operation. After the engine has stopped allow 60 seconds to pass in order to allow the pressure to be purged before any service or repair is performed on the engine fuel lines.

Do not loosen the high pressure fuel lines in order to remove air from the fuel system. This procedure is not required.

Visually inspect the high pressure fuel lines before the engine is started. This inspection should be each day.

If you inspect the engine in operation, always use the proper inspection procedure in order to avoid a fluid penetration hazard. Refer to Operation and Maintenance Manual, "General hazard Information".

- Inspect the high pressure fuel lines for damage, deformation, a nick, a cut, a crease, or a dent.
- Do not operate the engine with a fuel leak. If there is a leak do not tighten the connection in order to stop the leak. The connection must only be tightened to the recommended torque. Refer to Disassembly and Assembly, "Fuel injection lines - Remove and Fuel injection lines - Install".
- If the high pressure fuel lines are torqued correctly and the high pressure fuel lines are leaking the high pressure fuel lines must be replaced.
Before Starting Engine

- Ensure that all clips on the high pressure fuel lines are in place. Do not operate the engine with clips that are damaged, missing or loose.
- Do not attach any other item to the high pressure fuel lines.
- Loosened high pressure fuel lines must be replaced. Also removed high pressure fuel lines must be replaced. Refer to Disassembly and assembly manual, “Fuel Injection Lines - Install”.

Engine Starting

WARNING

Do not use aerosol types of starting aids such as ether. Such use could result in an explosion and personal injury.

If a warning tag is attached to the engine start switch or to the controls DO NOT start the engine or move the controls. Consult with the person that attached the warning tag before the engine is started.

All protective guards and all protective covers must be installed if the engine must be started in order to perform service procedures. To help prevent an accident that is caused by parts in rotation, work around the parts carefully.

Start the engine from the operator's compartment or from the engine start switch.

Always start the engine according to the procedure that is described in the Operation and Maintenance Manual, “Engine Starting” topic in the Operation Section. Knowing the correct procedure will help to prevent major damage to the engine components. Knowing the procedure will also help to prevent personal injury.

To ensure that the jacket water heater (if equipped) and/or the lube oil heater (if equipped) is working correctly, check the water temperature gauge and/or the oil temperature gauge during the heater operation.

Engine exhaust contains products of combustion which can be harmful to your health. Always start the engine and operate the engine in a well ventilated area. If the engine is started in an enclosed area, vent the engine exhaust to the outside.

Note: The engine is equipped with a device for cold starting. If the engine will be operated in very cold conditions, then an extra cold starting aid may be required. Normally, the engine will be equipped with the correct type of starting aid for your region of operation.

These engines are equipped with a glow plug starting aid in each individual cylinder that heats the intake air in order to improve starting.
Engine Stopping

Stop the engine according to the procedure in the Operation and Maintenance Manual, “Engine Stopping (Operation Section)” in order to avoid overheating of the engine and accelerated wear of the engine components.

Use the Emergency Stop Button (if equipped) ONLY in an emergency situation. Do not use the Emergency Stop Button for normal engine stopping. After an emergency stop, DO NOT start the engine until the problem that caused the emergency stop has been corrected.

Stop the engine if an overspeed condition occurs during the initial start-up of a new engine or an engine that has been overhauled.

To stop an electronically controlled engine, cut the power to the engine and/or shutting off the air supply to the engine.

Electrical System

Never disconnect any charging unit circuit or battery circuit cable from the battery when the charging unit is operating. A spark can cause the combustible gases that are produced by some batteries to ignite.

To help prevent sparks from igniting combustible gases that are produced by some batteries, the negative “−” cable should be connected last from the external power source to the negative “−” terminal of the starting motor. If the starting motor is not equipped with a negative “−” terminal, connect the cable to the engine block.

Check the electrical wires daily for wires that are loose or frayed. Tighten all loose electrical connections before the engine is started. Repair all frayed electrical wires before the engine is started. See the Operation and Maintenance Manual for specific starting instructions.

Grounding Practices

Correct grounding for the engine electrical system is necessary for optimum engine performance and reliability. Incorrect grounding will result in uncontrolled electrical circuit paths and in unreliable electrical circuit paths.
Uncontrolled electrical circuit paths can result in damage to the crankshaft bearing journal surfaces and to aluminum components.

Engines that are installed without engine-to-frame ground straps can be damaged by electrical discharge.

To ensure that the engine and the engine electrical systems function correctly, an engine-to-frame ground strap with a direct path to the battery must be used. This path may be provided by way of a direct engine ground to the frame.

The connections for the grounds should be tight and free of corrosion. The engine alternator must be grounded to the negative "-" battery terminal with a wire that is adequate to handle the full charging current of the alternator.

The power supply connections and the ground connections for the engine electronics should always be from the isolator to the battery.

Engine Electronics

WARNING

Tampering with the electronic system installation or the OEM wiring installation can be dangerous and could result in personal injury or death and/or engine damage.

WARNING

Electrical Shock Hazard. The electronic unit injectors use DC voltage. The ECM sends this voltage to the electronic unit injectors. Do not come in contact with the harness connector for the electronic unit injectors while the engine is operating. Failure to follow this instruction could result in personal injury or death.

This engine has a comprehensive, programmable Engine Monitoring System. The Electronic Control Module (ECM) has the ability to monitor the engine operating conditions. If any of the engine parameters extend outside an allowable range, the ECM will initiate an immediate action.

The following actions are available for engine monitoring control:

- Derate
- Shutdown

The following monitored engine operating conditions have the ability to limit engine speed and/or the engine power:

- Engine Coolant Temperature
- Engine Oil Pressure
- Engine Speed
- Intake Manifold Air Temperature

The Engine Monitoring package can vary for different engine models and different engine applications. However, the monitoring system and the engine monitoring control will be similar for all engines.

Note: Many of the engine control systems and display modules that are available for Perkins Engines will work in unison with the Engine Monitoring System. Together, the two controls will provide the engine monitoring function for the specific engine application. Refer to the Electronic Troubleshooting Manual for more information on the Engine Monitoring System.
NOTICE
Proper welding procedures are necessary in order to avoid damage to the engine’s ECM, sensors, and associated components. When possible, remove the component from the unit and then weld the component. If removal of the component is not possible, the following procedure must be followed when you weld with a unit that is equipped with an Electronic Engine. The following procedure is considered to be the safest procedure to weld a component. This procedure should provide a minimum risk of damage to electronic components.

Clamp the ground cable from the welder to the component that will be welded. Place the clamp as close as possible to the weld. This will help reduce the possibility of damage.

1. Stop the engine. Turn the switched power to the OFF position.
2. Disconnect the negative battery cable from the battery. If a battery disconnect switch is provided, open the switch.
3. Disconnect the J1/P1 connectors from the ECM. Move the harness to a position that will not allow the harness to accidentally move back and make contact with any of the ECM pins.
4. Connect the welding ground cable directly to the part that will be welded. Place the ground cable as close as possible to the weld in order to reduce the possibility of welding current damage to bearings, hydraulic components, electrical components, and ground straps.

Note: If electrical/electronic components are used as a ground for the welder, or electrical/electronic components are located between the welder ground and the weld, current flow from the welder could severely damage the component.
5. Protect the wiring harness from welding debris and spatter.
6. Use standard welding practices to weld the materials.
Model Views

Model View Illustrations

The following model views show typical features of the engine. Due to individual applications, your engine may appear different from the illustrations.

Note: Only major components are identified on the following illustrations.

Illustration 15

Front left engine view

1. Fuel pump
2. Secondary fuel filter
3. Air intake
4. Hand primer
5. Primary fuel filter
6. Crankcase breather
7. Fuel manifold
8. J2 connector
9. Electronic control module
10. J1 connector
11. Oil cooler
12. Oil filter
13. Oil gauge
14. Damper
15. Timing case cover
16. Oil filler
17. Fan
18. Fan pulley
19. Water pump
Engine Description

The 1106 Electronic Engine model PJ is designed for the following applications: machine and industrial mobile equipment. The engine is available in the following type of aspiration:

- Turbocharged aftercooled

Engine Specifications

Note: The front end of the engine is opposite the flywheel end of the engine. The left and the right sides of the engine are determined from the flywheel end. The number 1 cylinder is the front cylinder.
Table 1
<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Range (rpm)</td>
<td>900 to 2800(^{(1)})</td>
</tr>
<tr>
<td>Number of Cylinders</td>
<td>6 In-Line</td>
</tr>
<tr>
<td>Bore</td>
<td>105 mm (4.13 inch)</td>
</tr>
<tr>
<td>Stroke</td>
<td>127 mm (5.0 inch)</td>
</tr>
<tr>
<td>Aspiration</td>
<td>Turbocharged aftercooled</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>16.2:1</td>
</tr>
<tr>
<td>Displacement</td>
<td>6.6 L (403 in(^{3}))</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1-5-3-6-2-4</td>
</tr>
<tr>
<td>Rotation (flywheel end)</td>
<td>Counterclockwise</td>
</tr>
<tr>
<td>Valve Lash Setting (Inlet)</td>
<td>0.35 mm (0.013 inch)</td>
</tr>
<tr>
<td>Valve Lash Setting (Exhaust)</td>
<td>0.35 mm (0.013 inch)</td>
</tr>
</tbody>
</table>

\(^{(1)}\) The operating rpm is dependent on the engine rating, the application and the configuration of the throttle.

Electronic Engine Features

The engine operating conditions are monitored. The Electronic Control Module (ECM) controls the response of the engine to these conditions and to the demands of the operator. These conditions and operator demands determine the precise control of fuel injection by the ECM. The electronic engine control system provides the following features:

- Engine monitoring
- Engine speed governing
- Cold start strategy
- Automatic air/fuel ratio control
- Torque rise shaping
- Injection timing control
- System diagnostics

For more information on electronic engine features, refer to the Operation and Maintenance Manual, “Features and Controls” topic (Operation Section).

Engine Diagnostics

The engine has built-in diagnostics in order to ensure that the engine systems are functioning correctly. The operator will be alerted to the condition by a “Stop or Warning” lamp. Under certain conditions, the engine horsepower and the vehicle speed may be limited. The electronic service tool may be used to display the diagnostic codes.

There are three types of diagnostic codes: active, logged, and event.

Most of the diagnostic codes are logged and stored in the ECM. For additional information, refer to the Operation and Maintenance Manual, “Engine Diagnostics” topic (Operation Section).

The ECM provides an electronic governor that controls the injector output in order to maintain the desired engine rpm.

Engine Cooling and Lubrication

The cooling system consists of the following components:

- Gear-driven centrifugal water pump
- Water temperature regulator which regulates the engine coolant temperature
- Gear-driven oil pump (gear type)
- Oil cooler

The engine lubricating oil is supplied by a gear type pump. The engine lubricating oil is cooled and the engine lubricating oil is filtered. Bypass valves provide unrestricted flow of lubrication oil to the engine parts when oil viscosity is high. Bypass valves can also provide unrestricted flow of lubrication oil to the engine parts if the oil cooler should become plugged or if the oil filter element should become plugged.

Engine efficiency, efficiency of emission controls, and engine performance depend on adherence to proper operation and maintenance recommendations. Engine performance and efficiency also depend on the use of recommended fuels, lubrication oils, and coolants. Refer to this Operation and Maintenance Manual, “Maintenance Interval Schedule” for more information on maintenance items.
Product Identification Information

Plate Locations and Film Locations

Serial Number Plate (1)
The engine serial number plate is located on the left side of the cylinder block to the rear of the front engine mounting.

Perkins engines are identified by an engine serial number.

An example of an engine number is PJ*****U000001J.

***** ___________ The list number for the engine
PJ ______________________ Type of engine
U ________________ Built in the United Kingdom
000001 ________________ Engine Serial Number
J _____________________ Year of Manufacture

Perkins dealers or Perkins distributors need all of these numbers in order to determine the components that were included with the engine. This permits accurate identification of replacement part numbers.

The numbers for fuel setting information for electronic engines are stored within the personality module. These numbers can be read by using the Electronic Service Tool.

Reference Numbers

Information for the following items may be needed to order parts. Locate the information for your engine. Record the information in the appropriate space. Make a copy of this list for a record. Keep the information for future reference.

Record for Reference

Engine Model ________________________________
Engine Serial number ________________________
Engine Low Idle rpm _________________________
Engine Full Load rpm _________________________
Primary Fuel Filter __________________________
Water Separator Element ______________________
Secondary Fuel Filter Element __________________
Lubrication Oil Filter Element ________________
Auxiliary Oil Filter Element ___________________
Total Lubrication System Capacity ______________
Total Cooling System Capacity ________________
Air Cleaner Element _________________________
Fan Drive Belt__
Alternator Belt__

Emissions Certification Film

Label for compliant engines

Typical examples of emissions labels

IMPORTANT ENGINE INFORMATION

<table>
<thead>
<tr>
<th>Engine Family: 5PKXL04.4RH2 List:</th>
<th>Displacement: 4.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>List: RH37881</td>
<td></td>
</tr>
</tbody>
</table>

EPA Family Max Values
- Advertised kw: 86.
- Fuel Rate: **0** mm3/stk
- Init. Timing: * DEG ATDC
- idle RPM: ****

Emission Control System:
- ECM
- Valve Lash Cold (inch):
 - Exhaust 0.0**
 - Inlet 0.00*

Engine Label
- Engine Label
- Use Service Tool to verify current engine settings

Label No. 3181A081

Settings are to be made with engine at normal operating temperature with transmission in neutral. This engine conforms to 2004 U.S. EPA non-road and California off-road Regulations for large C.I. engines and is certified to operate on commercially available diesel fuel.

Illustration 20

This typical example of a label is installed on engines that have electronic fuel injection systems and installed on engines that have electronic fuel injection pumps.

IMPORTANT ENGINE INFORMATION

<table>
<thead>
<tr>
<th>Engine Family: 5PKXL04.0AJ1 List:</th>
<th>RE81372</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Type: 2160/2200</td>
<td>Displacement: 4.400</td>
</tr>
</tbody>
</table>

EPA Family Max Values
- Advertised kw: 62 @ RPM: 2200
- Fuel Rate at adv kw: 64.2 mm3/stk
- Init. Timing: * DEG BTDC
- idle RPM: ****

Emission Control System:
- DDI
- Valve Lash Cold (inch):
 - Exhaust 0.0**
 - Inlet 0.00*

Engine Label
- Engine Label
- Label No. 3181A081

Settings are to be made with engine at normal operating temperature with transmission in neutral. This engine conforms to 2005 U.S. EPA non-road and California off-road Regulations for large C.I. engines and is certified to operate on commercially available diesel fuel.

Illustration 21

This typical example of a label is installed on engines that have mechanical fuel injection pumps.
Label for engines that do not comply with emissions

EMISSIONS CONTROL INFORMATION

ENGINE FAMILY: ******
ENGINE DISPLACEMENT: ******
MODEL YEAR: 2005

This non-road engine may be used as a REPLACEMENT engine within the EU, as per the provisions of Directive 97/68/EC.

INFORMATION APPLICABLE TO USA ONLY

This non-road engine does not comply with either federal non-road or California off-road engine emission regulation requirements. Sale or installation of this engine is a violation of federal and Californian law subject to civil penalty for any purpose other than as an EXPORT - ONLY or REPLACEMENT engine.

Export - only engine is indicated by an additional attached tag.

Hanger No **
Position ****
Label No. 3181A081

Illustration 22
g01156734

This typical example of a label is installed on engines that do not comply with emissions.

EMISSIONS CONTROL INFORMATION

ENGINE FAMILY: 1104C - 44TA
ENGINE DISPLACEMENT: 4. 400
MODEL YEAR: 2005

FOLLOWING INFORMATION APPLICABLE TO USA ONLY

This non-road engine does not comply with either federal non-road or California off-road engine emission regulation requirement. Sale or installation of this engine can only be for STATIONARY ENGINE. Use only as defined by CFR 40 PART 89.2.

Hanger No **
Position (81)
Label 318A081

Illustration 23
g01157127

This typical example of a label is installed on engines that are stationary engines.
Operation Section

Lifting and Storage

Engine Lifting

NOTICE

Never bend the eyebolts and the brackets. Only load the eyebolts and the brackets under tension. Remember that the capacity of an eyebolt is less as the angle between the supporting members and the object becomes less than 90 degrees.

When it is necessary to remove a component at an angle, only use a link bracket that is properly rated for the weight.

Use a hoist to remove heavy components. Use an adjustable lifting beam to lift the engine. All supporting members (chains and cables) should be parallel to each other. The chains and cables should be perpendicular to the top of the object that is being lifted.

Some removals require lifting the fixtures in order to obtain correct balance and safety.

To remove the engine ONLY, use the lifting eyes that are on the engine.

Lifting eyes are designed and installed for specific engine arrangements. Alterations to the lifting eyes and/or the engine make the lifting eyes and the lifting fixtures obsolete. If alterations are made, ensure that correct lifting devices are provided. Consult your Perkins dealer or your Perkins distributor for information regarding fixtures for correct engine lifting.

Engine Storage

If the engine is not started for a month or longer the lubricating oil will drain from the cylinder walls and from the piston rings. Rust can form on the cylinder walls. Rust on the cylinder walls will cause increased engine wear and a reduction in engine service life.

Perkins are not responsible for damage which may occur when an engine is in storage after a period in service.

Your Perkins dealer or your Perkins distributor can assist in preparing the engine for extended storage periods.

If an engine is out of operation and if use of the engine is not planned for more than one month, a complete protection procedure is recommended.

To help prevent excessive engine wear and corrosion to the engine, use the following guidelines:

1. Completely clean the outside of the engine.
2. Ensure that the vehicle is on level ground.
3. Drain the fuel system completely and refill the system with preservative fuel. 1772204 POWERPART Lay-Up 1 can be mixed with the normal fuel in order to change the fuel into preservative fuel.

If preservative fuel is not available, the fuel system can be filled with normal fuel. This fuel must be discarded at the end of the storage period together with the fuel filter elements.
24 SEBU8119
Operation Section
Lifting and Storage

WARNING

Personal injury can result from hot coolant. Any contact with hot coolant or with steam can cause severe burns. Allow cooling system components to cool before the cooling system is drained.

4. Drain and refill the cooling system. Refer to this Operation and Maintenance Manual, “Cooling System coolant (Commercial Heavy Duty - Change or Cooling System coolant (ELC) - Change” for information on draining, flushing and refilling the cooling system.

WARNING

Contact with high pressure fuel may cause fluid penetration and burn hazards. High pressure fuel spray may cause a fire hazard. Failure to follow these inspection, maintenance and service instructions may cause personal injury or death.

5. Operate the engine until the engine reaches normal operating temperature. Stop the engine. After the engine has stopped, you must wait for 60 seconds in order to allow the fuel pressure to be purged from the high pressure fuel lines before any service or repair is performed on the engine fuel lines. If necessary, perform minor adjustments. Repair any leaks from the low pressure fuel system and from the cooling, lubrication or air systems. Replace any high pressure fuel line that has leaked. Refer to Disassembly and assembly Manual, “Fuel Injection Lines - Install”.

6. Drain the lubricating oil from the oil pan.

Renew the canister(s) of the lubricating oil filter.

Fill the oil pan to the Full Mark on the engine oil level gauge with new, clean lubricating oil. Add 1762811 POWERPART Lay-Up 2 to the oil in order to protect the engine against corrosion. If 1762811 POWERPART Lay-Up 2 is not available, use a preservative of the correct specification instead of the lubricating oil. If a preservative is used, this must be drained completely at the end of the storage period and the oil pan must be refilled to the correct level with normal lubricating oil.

7. Operate the engine in order to circulate engine oil.

8. Disconnect the battery. Ensure that the battery is in a fully charged condition. Protect the terminals against corrosion. 1734115 POWERPART Lay-Up 3 can be used on the terminals. Put the battery into safe storage.

9. If equipped, replace the crankcase breather element. Seal the end of the breather pipe.

10. Remove the valve mechanism cover. Spray 1762811 POWERPART Lay-Up 2 around the rocker shaft assembly.

11. Remove the glow plugs. Slowly rotate the crankshaft. By checking the valves, position the piston at BDC. Spray 1762811 POWERPART Lay-Up 2 for two seconds into the cylinder bore. This procedure must be carried out on each cylinder.

12. Install the glow plugs. Install the valve mechanism cover.

13. Remove the pipes that are installed between the air filter assembly and the turbocharger. Spray 1762811 POWERPART Lay-Up 2 into the turbocharger. The duration of the spray is printed on the container. Seal the turbocharger with waterproof tape.

14. Remove the exhaust pipe from the output side of the turbocharger. Spray 1762811 POWERPART Lay-Up 2 into the turbocharger. The duration of the spray is printed on the container. Seal the turbocharger with waterproof tape.

15. Seal the vent of the fuel tank or the fuel filler cap with waterproof tape.

16. Remove the alternator drive belt and put the drive belt into storage.

17. In order to prevent corrosion to the outside of the engine, spray the engine with 1734115 POWERPART Lay-Up 3. Do not spray the area inside the alternator.
Your engine may not have the same gauges or all of the gauges that are described. For more information about the gauge package, see the OEM information.

Gauges provide indications of engine performance. Ensure that the gauges are in good working order. Determine the normal operating range by observing the gauges over a period of time.

Noticeable changes in gauge readings indicate potential gauge or engine problems. Problems may also be indicated by gauge readings that change even if the readings are within specifications. Determine and correct the cause of any significant change in the readings. Consult your Perkins dealer or your Perkins distributor for assistance.

Some engine applications are equipped with Indicator Lamps. Indicator lamps can be used as a diagnostic aid. There are two lamps. One lamp has an orange lens and the other lamp has a red lens.

These indicator lamps can be used in two ways:

- The indicator lamps can be used to identify the current operational status of the engine. The indicator lamps can also indicate that the engine has a fault. This system is automatically operated via the ignition switch.
- The indicator lamps can be used to identify active diagnostic codes. This system is activated by pressing the Flash Code button.

Refer to the Troubleshooting Guide, “Indicator Lamps” for further information.

NOTICE

If no oil pressure is indicated, STOP the engine. If maximum coolant temperature is exceeded, STOP the engine. Engine damage can result.

Engine Oil Pressure – The oil pressure should be greatest after a cold engine is started. The typical engine oil pressure with SAE10W40 is 350 to 450 kPa (50 to 65 psi) at rated rpm.

A lower oil pressure is normal at low idle. If the load is stable and the gauge reading changes, perform the following procedure:

1. Remove the load.
2. Stop the engine.
3. Check and maintain the oil level.

Jacket Water Coolant Temperature – Typical temperature range is 83° to 95°C (181.4° to 171°F). The maximum allowable temperature at sea level with the pressurized cooling system at 48 kPa (7 psi) is 103 °C (217.4 °F). Higher temperatures may occur under certain conditions. The water temperature reading may vary according to load. The temperature reading should never exceed 7 °C (44.6 °F) below the boiling point for the pressurized system that is being used.

If the engine is operating above the normal range and steam becomes apparent, perform the following procedure:

1. Reduce the load and the engine rpm.
2. Determine if the engine must be shut down immediately or if the engine can be cooled by reducing the load.
3. Inspect the cooling system for leaks.

Tachometer – This gauge indicates engine speed (rpm). When the throttle control lever is moved to the full throttle position without load, the engine is running at high idle. The engine is running at the full load rpm when the throttle control lever is at the full throttle position with maximum rated load.

NOTICE

To help prevent engine damage, never exceed the high idle rpm. Overspeeding can result in serious damage to the engine. Operation at speeds exceeding high idle rpm should be kept to a minimum.

Ammeter – This gauge indicates the amount of charge or discharge in the battery charging circuit. Operation of the indicator should be to the “+” side of “0” (zero).

Fuel Level – This gauge indicates the fuel level in the fuel tank. The fuel level gauge operates when the “START/STOP” switch is in the “on” position.

Service Hour Meter – The gauge indicates total operating hours of the engine.
Features and Controls

Monitoring System

WARNING
If the Shutdown mode has been selected and the warning indicator activates, engine shutdown may take as little as 20 seconds from the time the warning indicator is activated. Depending on the application, special precautions should be taken to avoid personal injury. The engine can be restarted following shutdown for emergency maneuvers, if necessary.

NOTICE
The Engine Monitoring System is not a guarantee against catastrophic failures. Programmed delays and derate schedules are designed to minimize false alarms and provide time for the operator to stop the engine.

The following parameters are monitored:

- Coolant temperature
- Intake manifold air temperature
- Intake manifold air pressure
- Oil pressure
- Engine speed/timing

Programmable Options and Systems Operation

WARNING
If the Warning/Derate/Shutdown mode has been selected and the warning indicator activates, bring the engine to a stop whenever possible. Depending on the application, special precautions should be taken to avoid personal injury.

The engine can be programmed to the following modes:

“Warning”
The “Warning” lamp and the warning signal (orange lamp) turn “ON” and the warning signal is activated continuously in order to alert the operator that one or more of the engine parameters is not within normal operating range.

“Warning/Derate”
The “Diagnostic” lamp turns “ON” and the warning signal (red lamp) is activated. After the warning, the engine power will be derated. The warning lamp will begin to flash when the derating occurs.

The engine will be derated if the engine exceeds preset operational limits. The engine derate is achieved by restricting the amount of fuel that is available for each injection. The amount of this reduction of fuel is dependent on the severity of the fault that has caused the engine derate, typically up to a limit of 50%. This reduction in fuel results in a predetermined reduction in engine power.

“Warning/Derate/Shutdown”
The “Diagnostic” lamp turns “ON” and the warning signal (red lamp) is activated. After the warning, the engine power will be derated. The engine will continue at the rpm of the set derate until a shutdown of the engine occurs. The engine can be restarted after a shutdown for use in an emergency.

A shutdown of the engine may occur in as little as 20 seconds. The engine can be restarted after a shutdown for use in an emergency. However, the cause of the initial shutdown may still exist. The engine may shut down again in as little as 20 seconds.

If there is a signal for low oil pressure or for coolant temperature, there will be a two second delay in order to verify the condition.

For each of the programmed modes, refer to Troubleshooting Guide, “Indicator Lamps” for more information on Indicator Lamps.

For more information or assistance for repairs, consult your Perkins dealer or your Perkins distributor.
Monitoring System

Table 2

<table>
<thead>
<tr>
<th>Warning Lamp</th>
<th>Shutdown Lamp</th>
<th>Lamp Status</th>
<th>Description of lamp status</th>
<th>Engine Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>ON</td>
<td>Lamp check</td>
<td>When the engine start switch is turned to the “ON” position both lamps will illuminate for 2 seconds only.</td>
<td>The engine has not been started.</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>No faults</td>
<td>There are no active diagnostic faults.</td>
<td>The engine is running normally.</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Active diagnostic fault</td>
<td>An active diagnostic fault has been detected.</td>
<td>The engine is running normally.</td>
</tr>
<tr>
<td>ON</td>
<td>FLASHING</td>
<td>Active diagnostic fault</td>
<td>A serious active diagnostic fault has been detected and an engine derate has been invoked.</td>
<td>The engine is running but the engine has been derated.</td>
</tr>
<tr>
<td>FLASHING</td>
<td>OFF</td>
<td>Warning</td>
<td>One or more of the engine protection values has been exceeded.</td>
<td>The engine is running normally.</td>
</tr>
<tr>
<td>FLASHING</td>
<td>FLASHING</td>
<td>Derate and warning</td>
<td>One or more of the engine protection values has been exceeded.</td>
<td>The engine is running but the engine has been derated.</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Engine shutdown</td>
<td>One or more of the engine protection values has been exceeded or a serious active diagnostic fault has been detected.</td>
<td>The engine is shutdown or shutdown is imminent.</td>
</tr>
</tbody>
</table>

Sensors and Electrical Components

Sensor Locations

Illustration 25 shows the typical locations of the sensors on the engine. Specific engines may appear different from the illustration due to differences in applications. The location of the electronic control module is illustrated.
(1) Coolant temperature sensor
(2) Inlet air temperature sensor
(3) Inlet air pressure sensor
(4) Fuel pressure sensor
(5) Electronic control module (ECM)
(6) Oil pressure sensor
(7) Crankshaft position sensor
(8) Secondary position sensor
Illustration 26 shows the sensors in position on the engine.

Failure of Sensors

All Sensors

A failure of any of the sensors may be caused by one of the following malfunctions:

- Sensor output is open.
- Sensor output is shorted to “- battery” or “+ battery”.
- Measured reading of the sensor is out of the specification.

Programmable Monitoring System (PMS)

The Programmable Monitoring System determines the level of action that is taken by the Engine Control Module (ECM) (5) in response to a condition that can damage the engine. These conditions are identified by the ECM from the signals that are produced from the following sensors. Refer to illustration 25 for the ECM.

- Inlet Air Temperature Sensor
- Engine Coolant Temperature Sensor
- Engine Oil Pressure Sensor
- Engine Speed/Timing Sensors
• Fuel Pressure Sensor
• Inlet Air Pressure Sensor

Coolant Temperature Sensor 1

The coolant temperature sensor monitors engine coolant temperature. The output of the ECM (5) can indicate a high coolant temperature through a relay or a lamp. The coolant temperature sensor is used by the ECM to determine initiation of the Cold Start Condition.

Failure of the Coolant Temperature Sensor

The ECM (5) will detect a failure of the coolant temperature sensor. The diagnostic lamp will warn the operator about the status of the coolant temperature sensor. A failure of the coolant temperature sensor will not cause a shutdown of the engine or any horsepower change. The faulty sensor should be replaced. Refer to Disassembly and assembly Manual, “Coolant Temperature Sensor - Remove and Install”.

Inlet Air Temperature Sensor 2

The inlet air temperature sensor measures the inlet air temperature. A signal is sent to the ECM (5). The inlet air temperature sensor is also used by the ECM to determine initiation of the Cold Start Strategy.

Inlet Air Pressure Sensor 3

The inlet air pressure sensor measures boost pressure in the inlet air manifold. A signal is sent to the ECM (5).

Fuel Pressure Sensor 4

The fuel pressure sensor measures the fuel pressure in the fuel manifold. A signal is sent to the ECM (5).

Engine Oil Pressure Sensor 6

The engine oil pressure sensor is an absolute pressure sensor that measures the engine oil pressure in the main oil gallery. The engine oil pressure sensor detects engine oil pressure for diagnostic purposes. The engine oil pressure sensor sends a signal to the ECM (5).

Low Oil Pressure Warning

The setpoint for the low pressure warning is dependent upon the engine speed. The fault will be active and logged only if the engine has been running for more than 8 seconds.

Very Low Oil Pressure Warning

The very low oil pressure setpoint is dependent upon the engine speed. If the DERATE mode of the engine monitoring system is selected, the ECM (5) will derate the engine power. The engine horsepower will be limited.

Failure of the Engine Oil Pressure Sensor

The ECM (5) will detect failure of the engine oil pressure sensor. The diagnostic lamp warns the user about the status of the engine oil pressure sensor. The engine oil pressure related strategies will be disabled in the event of a failure of the engine oil pressure sensor. A failure of the engine oil pressure sensor will not cause a shutdown of the engine or any horsepower change. The faulty sensor should be replaced. Refer to Disassembly and assembly Manual, “Engine Oil Pressure Sensor - Remove and Install”.

Crankshaft Position Sensor 7

If the ECM (5) does not receive a signal from the crankshaft position sensor, the “DIAGNOSTIC” lamp will indicate a diagnostic fault code which will be logged in the ECM memory.

If the ECM does not receive a signal from the primary speed/timing sensor (7), the ECM will read the signal from the secondary speed/timing sensor (8). The ECM continually checks in order to determine if there is a signal from both sensors. If either sensor fails, the faulty sensor should be replaced. Refer to Disassembly and assembly Manual, “Crankshaft Position Sensor - Remove and Install”.

Intermittent failure of the sensors will cause erratic engine control.

Secondary Position Sensor 8

The signal from the secondary position sensor is used by the ECM (5) on engine start-up in order to check the stroke of the pistons. The secondary sensor may be used by the ECM in order to operate the engine if the crankshaft position sensor is faulty.
Overspeed

An overspeed condition is detected by the Electronic Control Module (ECM). The event code will be logged if the engine speed exceeds 3000 rpm. The “DIAGNOSTIC” lamp will indicate a diagnostic active code. The diagnostic active code will remain active until the engine speed drops to 2800 rpm.
Engine Diagnostics

Self-Diagnostics

Perkins Electronic Engines have the capability to perform a self-diagnostics test. When the system detects an active problem, a diagnostic lamp is activated. Diagnostic codes will be stored in permanent memory in the Electronic Control Module (ECM). The diagnostic codes can be retrieved by using the electronic service tool. Refer to Troubleshooting Guide, “Electronic Service Tools” for further information.

Some installations have electronic displays that provide direct readouts of the engine diagnostic codes. Refer to the manual that is provided by the OEM for more information on retrieving engine diagnostic codes. Alternatively refer to the Troubleshooting Guide, “Indicator Lamps” for further information.

Active codes represent problems that currently exist. These problems should be investigated first.

Logged codes represent the following items:

- Intermittent problems
- Recorded events
- Performance history

The problems may have been repaired since the logging of the code. These codes do not indicate that a repair is needed. The codes are guides or signals when a situation exists. Codes may be helpful to troubleshoot problems.

When the problems have been corrected, the corresponding logged fault codes should be cleared.

Use the following procedure to retrieve the flash codes if the engine is equipped with a “DIAGNOSTIC” lamp:

1. Turn the keyswitch “ON/OFF” three times within 5 seconds.

A flashing “YELLOW” lamp indicates a 3 digit code for the engine. The sequence of flashes represents the system diagnostic message. Count the first sequence of flashes in order to determine the first digit of the flash code. After a two second pause, the second sequence of flashes will identify the second digit of the flash code. After the second pause, the third sequence of flashes will identify the flash code.

Any additional flash codes will follow after a pause. These codes will be displayed in the same manner. Flash Code 551 indicates that No Detected Faults have occurred since the ignition key switch has been turned to the ON position.

For further information, assistance for repairs, or troubleshooting, refer to the Service Manual or consult an authorized Caterpillar dealer.

Table 3 lists the flash codes and the table also gives a brief description of the flash codes.

Note: Table 3 indicates the potential effect on engine performance with “ACTIVE” flash codes.

Some codes record events. Also, some codes may also indicate that a mechanical system needs attention. Troubleshooting is not required for codes , “141”, and “551”. Code 001 will not display a flash code. Some codes will limit the operation or the performance of the engine.

Table 3 indicates the potential effect on the engine performance with active flash codes. Table 3 also forms a list of Electronic diagnostic codes and descriptions.

Diagnostic Flash Code Retrieval

“Diagnostic” Lamp

Use the “DIAGNOSTIC” Lamp or an electronic service tool to determine the diagnostic flash code.
Table 3

<table>
<thead>
<tr>
<th>Diagnostic Flash Code</th>
<th>Flash Codes for 1106D Industrial Engine</th>
<th>Effect On Engine Performance (1)</th>
<th>Suggested Operator Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Engine Misfire</td>
<td>Low Power</td>
</tr>
<tr>
<td>111 Cylinder 1 Fault</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>112 Cylinder 2 Fault</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>113 Cylinder 3 Fault</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>114 Cylinder 4 Fault</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>115 Cylinder 5 Fault</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>116 Cylinder 6 Fault</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>133 Intake Manifold Temperature sensor fault (5)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137 High Injection Actuation Pressure</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>141 Crank Timing Sensor Fault</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>142 Pump Timing Sensor Fault</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>143 Timing Calibration Fault</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>157 Oil Pressure Sensor Fault(5)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>159 Fuel Rail Pressure Sensor Fault</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>162 High Pressure Fuel Pump Fault</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>169 Coolant Temperature Sensor Fault</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>177 Wastegate Solenoid Fault</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>197 Intake Manifold Pressure Sensor Fault</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>415 Incorrect Engine Software</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>422 Intermittent Battery Power to ECM</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>439 Key Switch Fault</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Diagnostic Flash Code</th>
<th>Effect On Engine Performance (1)</th>
<th>Suggested Operator Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Engine Misfire</td>
<td>Low Power</td>
</tr>
<tr>
<td>516 517 Sensor Supply Voltage Fault (5)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>527 Check Customer Parameters or System Parameters (5)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

(1) An “X” indicates that the effect on engine performance may occur if the code is active.

(2) Shut Down the Engine: Operate the engine cautiously. Get immediate service. Severe engine damage may result.

(3) The operator should go to the nearest location that has a qualified service program.

(4) Schedule Service: The problem should be investigated when the operator has access to a qualified service program.

(5) These Flash Codes may affect the system under specific environmental conditions such as engine start-up at cold temperature and cold weather operation at high altitudes.

Diagnostic Lamp

A diagnostic lamp is used to indicate the existence of an active fault. Refer to the Troubleshooting Guide, “Indicator Lamps” for more information. A fault diagnostic code will remain active until the problem is repaired. The diagnostic code may be retrieved by using the electronic service tool. Refer to the Troubleshooting Guide, “Electronic Service Tools” for more information.

Engine Operation with Active Diagnostic Codes

If a diagnostic lamp illuminates during normal engine operation, the system has identified a situation that is not within the specification. Use the electronic service tool to check the active diagnostic codes.

The active diagnostic code should be investigated. The cause of the problem should be corrected as soon as possible. If the cause of the active diagnostic code is repaired and there is only one active diagnostic code, the diagnostic lamp will turn off.

Operation of the engine and performance of the engine can be limited as a result of the active diagnostic code that is generated. Acceleration rates may be significantly slower and power outputs may be automatically reduced. Refer to the Troubleshooting Guide, “Troubleshooting with a Diagnostic Code” for more information on the relationship between each active diagnostic code and the possible effect on engine performance.

Fault Logging

The system provides the capability of Fault Logging. When the Electronic Control Module (ECM) generates an active diagnostic code, the code will be logged in the memory of the ECM. The codes that have been logged by the ECM can be identified by the electronic service tool. The active codes that have been logged will be cleared when the fault has been rectified or the fault is no longer active. The following logged faults can not be cleared from the memory of the ECM without using a factory password: Overspeed, low engine oil pressure, and high engine coolant temperature.
Engine Operation with Intermittent Diagnostic Codes

If a diagnostic lamp illuminates during normal engine operation and the diagnostic lamp shuts off, an intermittent fault may have occurred. If a fault has occurred, the fault will be logged into the memory of the Electronic Control Module (ECM).

In most cases, it is not necessary to stop the engine because of an intermittent code. However, the operator should retrieve the logged fault codes and the operator should reference the appropriate information in order to identify the nature of the event. The operator should log any observation that could have caused the lamp to light.

- Low power
- Limits of the engine speed
- Excessive smoke, etc

This information can be useful to help troubleshoot the situation. The information can also be used for future reference. For more information on diagnostic codes, refer to the Troubleshooting Guide for this engine.
Engine Starting

Before Starting Engine

Before the engine is started, perform the required daily maintenance and any other periodic maintenance that is due. Refer to the Operation and Maintenance Manual, “Maintenance Interval Schedule” for more information.

• Open the fuel supply valve (if equipped).

NOTICE
All valves in the fuel return line must be open before and during engine operation to help prevent high fuel pressure. High fuel pressure may cause filter housing failure or other damage.

If the engine has not been started for several weeks, fuel may have drained from the fuel system. Air may have entered the filter housing. Also, when fuel filters have been changed, some air pockets will be trapped in the engine. In these instances, prime the fuel system. Refer to the Operation and Maintenance Manual, “Fuel System - Prime” for more information on priming the fuel system.

WARNING
Engine exhaust contains products of combustion which may be harmful to your health. Always start and operate the engine in a well ventilated area and, if in an enclosed area, vent the exhaust to the outside.

• Do not start the engine or move any of the controls if there is a “DO NOT OPERATE” warning tag or similar warning tag attached to the start switch or to the controls.

• Reset all of the shutoffs or alarm components (if equipped).

• Ensure that any equipment that is driven by the engine has been disengaged from the engine. Minimize electrical loads or remove any electrical loads.

Starting the Engine

Note: Do not adjust the engine speed control during start-up. The electronic control module (ECM) will control the engine speed during start-up.

Starting the Engine

1. Disengage any equipment that is driven by the engine.

2. Turn the keyswitch to the RUN position. Leave the keyswitch in the RUN position until the warning light for the glow plugs is extinguished.

3. When the warning light for the glow plugs is extinguished, turn the keyswitch to the START position in order to engage the electric starting motor and crank the engine.

Note: The operating period of the warning light for the glow plugs will change due to the temperature of the engine.

NOTICE
Do not engage the starting motor when flywheel is turning. Do not start the engine under load.

If the engine fails to start within 30 seconds, release the starter switch or button and wait two minutes to allow the starting motor to cool before attempting to start the engine again.

4. Allow the keyswitch to return to the RUN position after the engine starts.

5. Repeat step 2 through step 4 if the engine fails to start.

Cold Weather Starting

WARNING
Do not use aerosol types of starting aids such as ether. Such use could result in an explosion and personal injury.

Startability will be improved at temperatures below -18 °C (0 °F) from the use of a jacket water heater or extra battery capacity.
When Group 2 diesel fuel is used, the following items provide a means of minimizing starting problems and fuel problems in cold weather: Engine oil pan heaters, jacket water heaters, fuel heaters, and fuel line insulation.

Use the procedure that follows for cold weather starting.

Note: Do not adjust the engine speed control during start-up. The electronic control module (ECM) will control the engine speed during start-up.

1. Disengage any driven equipment.
2. Turn the keyswitch to the RUN position. Leave the keyswitch in the RUN position until the warning light for the glow plugs is extinguished.

NOTICE
Do not engage the starting motor when flywheel is turning. Do not start the engine under load.

If the engine fails to start within 30 seconds, release the starter switch or button and wait two minutes to allow the starting motor to cool before attempting to start the engine again.

3. When the warning light for the glow plugs is extinguished, turn the keyswitch to the START position in order to engage the electric starting motor and crank the engine.

Note: The operating period of the warning light for the glow plugs will change due to the temperature of the engine.

4. Allow the keyswitch to return to the RUN position after the engine starts.
5. Repeat step 2 through step 4 if the engine fails to start.

Note: The engine should not be "raced" in order to speed up the warm-up process.

6. Allow the engine to idle for three to five minutes, or allow the engine to idle until the water temperature indicator begins to rise. When idling after the engine has started in cold weather, increase the engine rpm from 1000 to 1200 rpm. This will warm up the engine more quickly. Maintaining an elevated low idle speed for extended periods will be easier with the installation of a hand throttle. Allow the white smoke to disperse before proceeding with normal operation.

7. Operate the engine at low load until all systems reach operating temperature. Check the gauges during the warm-up period.

Starting with Jump Start Cables

WARNING
Improper jump start cable connections can cause an explosion resulting in personal injury.

Prevent sparks near the batteries. Sparks could cause vapors to explode. Do not allow jump start cable ends to contact each other or the engine.

Note: If it is possible, first diagnose the reason for the starting failure. Refer to Troubleshooting, “Engine Will Not Crank and Engine Cranks But Will Not Start” for further information. Make any necessary repairs. If the engine will not start only due to the condition of the battery, either charge the battery, or start the engine by using another battery with jump start cables. The condition of the battery can be rechecked after the engine has been switched OFF.

NOTICE
Using a battery source with the same voltage as the electric starting motor. Use ONLY equal voltage for jump starting. The use of higher voltage will damage the electrical system.

Do not reverse the battery cables. The alternator can be damaged. Attach ground cable last and remove first.

Turn all electrical accessories OFF before attaching the jump start cables.

Ensure that the main power switch is in the OFF position before attaching the jump start cables to the engine being started.

1. Turn the start switch on the stalled engine to the OFF position. Turn off all the engine’s accessories.
2. Connect one positive end of the jump start cable to the positive cable terminal of the discharged battery. Connect the other positive end of the jump start cable to the positive cable terminal of the electrical source.
3. Connect one negative end of the jump start cable to the negative cable terminal of the electrical source. Connect the other negative end of the jump start cable to the engine block or to the chassis ground. This procedure helps to prevent potential sparks from igniting the combustible gases that are produced by some batteries.

4. Start the engine.

5. Immediately after the engine is started, disconnect the jump start cables in reverse order.

After jump starting, the alternator may not be able to fully recharge batteries that are severely discharged. The batteries must be replaced or charged to the proper voltage with a battery charger after the engine is stopped. Many batteries which are considered unusable are still rechargeable. Refer to Operation and Maintenance Manual, “Battery - Replace” and Testing and Adjusting Manual, “Battery - Test”.

After Starting Engine

Note: In ambient temperatures from 0 to 60°C (32 to 140°F), the warm-up time is approximately three minutes. In temperatures below 0°C (32°F), additional warm-up time may be required.

When the engine idles during warm-up, observe the following conditions:

Do not check the high pressure fuel lines with the engine or the starting motor in operation. If you inspect the engine in operation, always use the proper inspection procedure in order to avoid a fluid penetration hazard. Refer to Operation and Maintenance Manual, “General hazard Information”.

- Check for any fluid or for any air leaks at idle rpm and at one-half full rpm (no load on the engine) before operating the engine under load. This is not possible in some applications.

- Allow the engine to idle for three to five minutes, or allow the engine to idle until the water temperature indicator begins to rise. Check all gauges during the warm-up period.

Note: Gauge readings should be observed and the data should be recorded frequently while the engine is operating. Comparing the data over time will help to determine normal readings for each gauge. Comparing data over time will also help detect abnormal operating developments. Significant changes in the readings should be investigated.
Engine Operation

Correct operation and maintenance are key factors in obtaining the maximum life and economy of the engine. If the directions in the Operation and Maintenance Manual are followed, costs can be minimized and engine service life can be maximized.

The engine can be operated at the rated rpm after the engine reaches operating temperature. The engine will reach normal operating temperature if the engine is operated at low idle speed and operated with a light load. This procedure is more effective than idling the engine at no load. The engine should reach operating temperature in a few minutes.

Gauge readings should be observed and the data should be recorded frequently while the engine is operating. Comparing the data over time will help to determine normal readings for each gauge. Comparing data over time will also help detect abnormal operating developments. Significant changes in the readings should be investigated.

Fuel Conservation Practices

The efficiency of the engine can affect the fuel economy. Perkins design and technology in manufacturing provides maximum fuel efficiency in all applications. Follow the recommended procedures in order to attain optimum performance for the life of the engine.

- Avoid spilling fuel.

Fuel expands when the fuel is warmed up. The fuel may overflow from the fuel tank. Inspect fuel lines for leaks. Repair the fuel lines, as needed.

- Be aware of the properties of the different fuels. Use only the recommended fuels.

- Avoid unnecessary idling.

Shut off the engine rather than idle for long periods of time.

- Observe the air cleaner service indicator frequently. Keep the air cleaner elements clean.

- Maintain the electrical systems.

One damaged battery cell will overwork the alternator. This will consume excess power and excess fuel.

- Ensure that the drive belts are correctly adjusted. The drive belts should be in good condition.

- Ensure that all of the connections of the hoses are tight. The connections should not leak.

- Ensure that the driven equipment is in good working order.

- Cold engines consume excess fuel. Utilize heat from the jacket water system and the exhaust system, when possible. Keep cooling system components clean and keep cooling system components in good repair. Never operate the engine without water temperature regulators. All of these items will help maintain operating temperatures.
Engine Stopping

Stopping the Engine

NOTICE
Stopping the engine immediately after it has been working under load, can result in overheating and accelerated wear of the engine components.

Avoid accelerating the engine prior to shutting it down.

Avoiding hot engine shutdowns will maximize turbocharger shaft and bearing life.

Note: Individual applications will have different control systems. Ensure that the shutoff procedures are understood. Use the following general guidelines in order to stop the engine.

1. Remove the load from the engine. Reduce the engine speed (rpm) to low idle. Allow the engine to idle for five minutes in order to cool the engine.

2. Stop the engine after the cool down period according to the shutoff system on the engine and turn the ignition key switch to the OFF position. If necessary, refer to the instructions that are provided by the OEM.

Emergency Stopping

NOTICE
Emergency shutoff controls are for EMERGENCY use ONLY. DO NOT use emergency shutoff devices or controls for normal stopping procedure.

The OEM may have equipped the application with an emergency stop button. For more information about the emergency stop button, refer to the OEM information.

Ensure that any components for the external system that support the engine operation are secured after the engine is stopped.

After Stopping Engine

Note: Before you check the engine oil, do not operate the engine for at least 10 minutes in order to allow the engine oil to return to the oil pan.

WARNING
Contact with high pressure fuel may cause fluid penetration and burn hazards. High pressure fuel spray may cause a fire hazard. Failure to follow these inspection, maintenance and service instructions may cause personal injury or death.

• After the engine has stopped, you must wait for 60 seconds in order to allow the fuel pressure to be purged from the high pressure fuel lines before any service or repair is performed on the engine fuel lines. If necessary, perform minor adjustments. Repair any leaks from the low pressure fuel system and from the cooling, lubrication or air systems. Replace any high pressure fuel line that has leaked. Refer to Disassembly and assembly Manual, “Fuel Injection Lines - Install”.

• Check the crankcase oil level. Maintain the oil level between the “MIN” mark and the “MAX” mark on the engine oil level gauge.

• If the engine is equipped with a service hour meter, note the reading. Perform the maintenance that is in the Operation and Maintenance Manual, “Maintenance Interval Schedule”.

• Fill the fuel tank in order to help prevent accumulation of moisture in the fuel. Do not overfill the fuel tank.

NOTICE
Only use antifreeze/coolant mixtures recommended in the Coolant Specifications that are in the Operation and Maintenance Manual. Failure to do so can cause engine damage.

WARNING
Pressurized System: Hot coolant can cause serious burns. To open the cooling system filler cap, stop the engine and wait until the cooling system components are cool. Loosen the cooling system pressure cap slowly in order to relieve the pressure.

• Allow the engine to cool. Check the coolant level.
• Check the coolant for correct antifreeze protection and the correct corrosion protection. Add the correct coolant/water mixture, if necessary.

• Perform all required periodic maintenance on all driven equipment. This maintenance is outlined in the instructions from the OEM.
Cold Weather Operation

Perkins Diesel Engines can operate effectively in cold weather. During cold weather, the starting and the operation of the diesel engine is dependent on the following items:

- The type of fuel that is used
- The viscosity of the engine oil
- The operation of the glow plugs
- Optional Cold starting aid
- Battery condition

This section will cover the following information:

- Potential problems that are caused by cold weather operation
- Suggest steps which can be taken in order to minimize starting problems and operating problems when the ambient air temperature is between 0° to 40 °C (32° to 72 °F).

The operation and maintenance of an engine in freezing temperatures is complex. This is because of the following conditions:

- Weather conditions
- Engine applications

Recommendations from your Perkins dealer or your Perkins distributor are based on past proven practices. The information that is contained in this section provides guidelines for cold weather operation.

Hints for Cold Weather Operation

- If the engine will start, operate the engine until a minimum operating temperature of 81 °C (177.8 °F) is achieved. Achieving operating temperature will help prevent the intake valves and exhaust valves from sticking.
- The cooling system and the lubrication system for the engine do not lose heat immediately upon shutdown. This means that an engine can be shut down for a period of time and the engine can still have the ability to start readily.
- Install the correct specification of engine lubricant before the beginning of cold weather.
- Check all rubber parts (hoses, fan drive belts, etc) weekly.
- Check all electrical wiring and connections for any fraying or damaged insulation.
- Keep all batteries fully charged and warm.
- Fill the fuel tank at the end of each shift.
- Check the air cleaners and the air intake daily. Check the air intake more often when you operate in snow.
- Ensure that the glow plugs are in working order. Refer to Testing and Adjusting Manual, "Glow Plug - Test".

WARNING

Personal injury or property damage can result from alcohol or starting fluids.

Alcohol or starting fluids are highly flammable and toxic and if improperly stored could result in injury or property damage.

WARNING

Do not use aerosol types of starting aids such as ether. Such use could result in an explosion and personal injury.

Viscosity of the Engine Lubrication Oil

Correct engine oil viscosity is essential. Oil viscosity affects the amount of torque that is needed to crank the engine. Refer to this Operation and Maintenance Manual, “Fluid Recommendations” for the recommended viscosity of oil.

Recommendations for the Coolant

Provide cooling system protection for the lowest expected outside temperature. Refer to this Operation and Maintenance Manual, “Fluid Recommendations” for the recommended coolant mixture.
In cold weather, check the coolant often for the correct glycol concentration in order to ensure adequate freeze protection.

Engine Block Heaters

Engine block heaters (if equipped) heat the engine jacket water that surrounds the combustion chambers. This provides the following functions:

- Startability is improved.
- Warm up time is reduced.

An electric block heater can be activated once the engine is stopped. An effective block heater is typically a 1250/1500 W unit. Consult your Perkins dealer or your Perkins distributor for more information.

Idling the Engine

When idling after the engine is started in cold weather, increase the engine rpm from 1000 to 1200 rpm. This will warm up the engine more quickly. Maintaining an elevated low idle speed for extended periods will be easier with the installation of a hand throttle. The engine should not be “raced” in order to speed up the warm up process.

While the engine is idling, the application of a light load (parasitic load) will assist in achieving the minimum operating temperature. The minimum operating temperature is 82 °C (179.6 °F).

Recommendations for Coolant Warm Up

Warm up an engine that has cooled below normal operating temperatures due to inactivity. This should be performed before the engine is returned to full operation. During operation in very cold temperature conditions, damage to engine valve mechanisms can result from engine operation for short intervals. This can happen if the engine is started and the engine is stopped many times without being operated in order to warm up completely.

When the engine is operated below normal operating temperatures, fuel and oil are not completely burned in the combustion chamber. This fuel and oil causes soft carbon deposits to form on the valve stems. Generally, the deposits do not cause problems and the deposits are burned off during operation at normal engine operating temperatures.

When the engine is started and the engine is stopped many times without being operated in order to warm up completely, the carbon deposits become thicker. This will cause the following problems:

- Free operation of the valves is prevented.
- Valves become stuck.
- Pushrods are bent.
- Other damage to valve train components can result.

For this reason, when the engine is started, the engine must be operated until the coolant temperature is 71 °C (160 °F) minimum. Carbon deposits on the valve stems will be kept at a minimum and the free operation of the valves and the valve components will be maintained.

In addition, the engine must be thoroughly warmed in order to keep other engine parts in better condition and the service life of the engine will be generally extended. Lubrication will be improved. There will be less acid and less sludge in the oil. This will provide longer service life for the engine bearings, the piston rings, and other parts. However, limit unnecessary idle time to ten minutes in order to reduce wear and unnecessary fuel consumption.

The Water Temperature Regulator and Insulated Heater Lines

The engine is equipped with a water temperature regulator. When the engine coolant is below the correct operating temperature jacket water circulates through the engine cylinder block and into the engine cylinder head. The coolant then returns to the cylinder block via an internal passage that bypasses the valve of the coolant temperature regulator. This ensures that coolant flows around the engine under cold operating conditions. The water temperature regulator begins to open when the engine jacket water has reached the correct minimum operating temperature. As the jacket water coolant temperature rises above the minimum operating temperature the water temperature regulator opens further allowing more coolant through the radiator to dissipate excess heat.

The progressive opening of the water temperature regulator operates the progressive closing of the bypass passage between the cylinder block and head. This ensures maximum coolant flow to the radiator in order to achieve maximum heat dissipation.

Note: Perkins discourages the use of all airflow restriction devices such as radiator shutters. Restriction of the airflow can result in the following: high exhaust temperatures, power loss, excessive fan usage, and reduction in fuel economy.
A cab heater is beneficial in very cold weather. The feed from the engine and the return lines from the cab should be insulated in order to reduce heat loss to the outside air.

Insulating the Air Inlet and Engine Compartment

When temperatures below $-18 \, ^\circ C \, (-0 \, ^\circ F)$ will be frequently encountered, an air cleaner inlet that is located in the engine compartment may be specified. An air cleaner that is located in the engine compartment may also minimize the entry of snow into the air cleaner. Also, heat that is rejected by the engine helps to warm the intake air.

Additional heat can be retained around the engine by insulating the engine compartment.

Fuel and the Effect from Cold Weather

Note: Only use grades of fuel that are recommended by Perkins. Refer to this Operation and Maintenance Manual, “Fluid Recommendations”.

The following fuels can be used in this series of engine.

- Group 1
- Group 2
- Group 3
- Special Fuels

Perkins prefer only Group 1 and Group 2 fuels for use in this series of engines.

Group 1 fuels are the preferred Group of Fuels for general use by Perkins. Group 1 fuels maximize engine life and engine performance. Group 1 fuels are usually less available than Group 2 fuels. Frequently, Group 1 fuels are not available in colder climates during the winter.

Note: Group 2 fuels must have a maximum wear scar of 650 micrometers (HFRR to ISO 12156-1).

Group 2 fuels are considered acceptable for issues of warranty. This group of fuels may reduce the life of the engine, the engine’s maximum power, and the engine’s fuel efficiency.

When Group 2 diesel fuels are used the following components provide a means of minimizing problems in cold weather:

- Glow plugs (if equipped)
- Engine coolant heaters, which may be an OEM option
- Fuel heaters, which may be an OEM option
- Fuel line insulation, which may be an OEM option

There are three major differences between Group 1 fuels and Group 2 fuels. Group 1 fuels have the following different characteristics to Group 2 fuels.

- A lower cloud point
- A lower pour point
- A higher energy per unit volume of fuel

Note: Group 3 fuels reduce the life of the engine. The use of Group 3 fuels is not covered by the Perkins warranty.

Group 3 fuels include Low Temperature Fuels and Aviation Kerosene Fuels.

Special fuels include Biofuel.

The cloud point is a temperature that allows wax crystals to form in the fuel. These crystals can cause the fuel filters to plug.

The pour point is the temperature when diesel fuel will thicken. The diesel fuel becomes more resistant to flow through fuel lines, fuel filters, and fuel pumps.

Be aware of these facts when diesel fuel is purchased. Consider the average ambient air temperature for the engine’s application. Engines that are fueled in one climate may not operate well if the engines are moved to another climate. Problems can result due to changes in temperature.

Before troubleshooting for low power or for poor performance in the winter, check the fuel for waxing.

Low temperature fuels may be available for engine operation at temperatures below $0 \, ^\circ C \, (32 \, ^\circ F)$. These fuels limit the formation of wax in the fuel at low temperatures.

For more information on cold weather operation, refer to the Operation and Maintenance Manual, “Cold Weather Operation and Fuel Related Components in Cold Weather”.
Fuel Related Components in Cold Weather

Fuel Tanks

Condensation can form in partially filled fuel tanks. Top off the fuel tanks after you operate the engine.

Fuel tanks should contain some provision for draining water and sediment from the bottom of the tanks.

Some fuel tanks use supply pipes that allow water and sediment to settle below the end of the fuel supply pipe.

Some fuel tanks use supply lines that take fuel directly from the bottom of the tank. If the engine is equipped with this system, regular maintenance of the fuel system filter is important.

Drain the water and sediment from any fuel storage tank at the following intervals: weekly, service intervals, and refueling of the fuel tank. This will help prevent water and/or sediment from being pumped from the fuel storage tank and into the engine fuel tank.

Fuel Filters

A primary fuel filter is installed between the fuel tank and the engine fuel inlet. After you change the fuel filter, always prime the fuel system in order to remove air bubbles from the fuel system. Refer to the Operation and Maintenance Manual in the Maintenance Section for more information on priming the fuel system.

The location of a primary fuel filter is important in cold weather operation. The primary fuel filter and the fuel supply line are the most common components that are affected by cold fuel.

Fuel Heaters

Note: The OEM may equip the application with fuel heaters. If this is the case, the temperature of the fuel must not exceed 73 °C (163 °F) at the fuel transfer pump.

For more information about fuel heaters (if equipped), refer to the OEM information.
Maintenance Section

Refill Capacities

Lubrication System

The refill capacities for the engine crankcase reflect the approximate capacity of the crankcase or sump plus standard oil filters. Auxiliary oil filter systems will require additional oil. Refer to the OEM specifications for the capacity of the auxiliary oil filter. Refer to the Operation and Maintenance Manual, “Maintenance Section” for more information on Lubricant Specifications.

Table 4

<table>
<thead>
<tr>
<th>Compartment or System</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crankcase Oil Sump(1)</td>
<td>13.5 L</td>
<td>16.5 L</td>
</tr>
<tr>
<td></td>
<td>(2.9696</td>
<td>(3.6295</td>
</tr>
<tr>
<td></td>
<td>Imp gal)</td>
<td>Imp gal)</td>
</tr>
</tbody>
</table>

(1) These values are the approximate capacities for the crankcase oil sump (aluminum) which includes the standard factory installed oil filters. Engines with auxiliary oil filters will require additional oil. Refer to the OEM specifications for the capacity of the auxiliary oil filter.

Cooling System

Refer to the OEM specifications for the External System capacity. This capacity information will be needed in order to determine the amount of coolant/antifreeze that is required for the Total Cooling System.

Table 5

<table>
<thead>
<tr>
<th>Compartment or System</th>
<th>Liters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Only</td>
<td>9 L (1.9797 Imp gal)</td>
</tr>
<tr>
<td>External System Per OEM(1)</td>
<td></td>
</tr>
</tbody>
</table>

(1) The External System includes a radiator or an expansion tank with the following components: heat exchanger and piping. Refer to the OEM specifications. Enter the value for the capacity of the External System in this row.

Fluid Recommendations

General Lubricant Information

Because of government regulations regarding the certification of exhaust emissions from the engine, the lubricant recommendations must be followed.

Engine Manufacturers Association (EMA) Oils

The “Engine Manufacturers Association Recommended Guideline on Diesel Engine Oil” is recognized by Perkins. For detailed information about this guideline, see the latest edition of EMA publication, “EMA DHD -1”.

API Oils

The Engine Oil Licensing and Certification System by the American Petroleum Institute (API) is recognized by Perkins. For detailed information about this system, see the latest edition of the “API publication No. 1509”. Engine oils that bear the API symbol are authorized by API.

Diesel engine oils CC, CD, CD-2, and CE have not been API authorized classifications since 1 January 1996. Table 6 summarizes the status of the classifications.
Maintenance Section
Refill Capacities

Table 6

<table>
<thead>
<tr>
<th>API Classifications</th>
<th>Current</th>
<th>Obsolete</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH-4, CI-4</td>
<td>CE, CC, CD</td>
<td>CD-2 (1)</td>
</tr>
</tbody>
</table>

(1) The oil CD-2 is for a two-cycle diesel engine. Perkins does not sell engines that utilize CD-2 oil.

Terminology

Certain abbreviations follow the nomenclature of “SAE J754”. Some classifications follow “SAE J183” abbreviations, and some classifications follow the “EMA Recommended Guideline on Diesel Engine Oil”. In addition to Perkins definitions, there are other definitions that will be of assistance in purchasing lubricants. Recommended oil viscosities can be found in this publication, “Fluid Recommendations/Engine Oil” topic (Maintenance Section).

Engine Oil

Commercial Oils

The performance of commercial diesel engine oils is based on American Petroleum Institute (API) classifications. These API classifications are developed in order to provide commercial lubricants for a broad range of diesel engines that operate at various conditions.

Only use commercial oils that meet the following classifications:

- API CH-4 CI-4

In order to make the correct choice of a commercial oil, refer to the following explanations:

EMA DHD-1 – The Engine Manufacturers Association (EMA) has developed lubricant recommendations as an alternative to the API oil classification system. DHD-1 is a Recommended Guideline that defines a level of oil performance for these types of diesel engines: high speed, four stroke cycle, heavy-duty, and light duty. DHD-1 oils may be used in Perkins engines when the following oils are recommended: API CH-4, API CG-4, and API CF-4. DHD-1 oils are intended to provide superior performance in comparison to API CG-4 and API CF-4.

DHD-1 oils will meet the needs of high performance Perkins diesel engines that are operating in many applications. The tests and the test limits that are used to define DHD-1 are similar to the new API CH-4 classification. Therefore, these oils will also meet the requirements for diesel engines that require low emissions. DHD-1 oils are designed to control the harmful effects of soot with improved wear resistance and improved resistance to plugging of the oil filter. These oils will also provide superior piston deposit control for engines with either two-piece steel pistons or aluminum pistons.

All DHD-1 oils must complete a full test program with the base stock and with the viscosity grade of the finished commercial oil. The use of “API Base Oil Interchange Guidelines” are not appropriate for DHD-1 oils. This feature reduces the variation in performance that can occur when base stocks are changed in commercial oil formulations.

DHD-1 oils are recommended for use in extended oil change interval programs that optimize the life of the oil. These oil change interval programs are based on oil analysis. DHD-1 oils are recommended for conditions that demand a premium oil. Your Perkins dealer or your Perkins distributor has the specific guidelines for optimizing oil change intervals.

API CH-4 – API CH-4 oils were developed in order to meet the requirements of the new high performance diesel engines. Also, the oil was designed to meet the requirements of the low emissions diesel engines. API CH-4 oils are also acceptable for use in older diesel engines and in diesel engines that use high sulfur diesel fuel. API CH-4 oils may be used in Perkins engines that use API CG-4 and API CF-4 oils. API CH-4 oils will generally exceed the performance of API CG-4 oils in the following criteria: deposits on pistons, control of oil consumption, wear of piston rings, valve train wear, viscosity control, and corrosion.

Three new engine tests were developed for the API CH-4 oil. The first test specifically evaluates deposits on pistons for engines with the two-piece steel piston. This test (piston deposit) also measures the control of oil consumption. A second test is conducted with moderate oil soot. The second test measures the following criteria: wear of piston rings, wear of cylinder liners, and resistance to corrosion. A third new test measures the following characteristics with high levels of soot in the oil: wear of the valve train, resistance of the oil in plugging the oil filter, and control of sludge.
In addition to the new tests, API CH-4 oils have tougher limits for viscosity control in applications that generate high soot. The oils also have improved oxidation resistance. API CH-4 oils must pass an additional test (piston deposit) for engines that use aluminum pistons (single piece). Oil performance is also established for engines that operate in areas with high sulfur diesel fuel.

All of these improvements allow the API CH-4 oil to achieve optimum oil change intervals. API CH-4 oils are recommended for use in extended oil change intervals. API CH-4 oils are recommended for conditions that demand a premium oil. Your Perkins dealer or your Perkins distributor has specific guidelines for optimizing oil change intervals.

Some commercial oils that meet the API classifications may require reduced oil change intervals. To determine the oil change interval, closely monitor the condition of the oil and perform a wear metal analysis.

Total Base Number (TBN) and Fuel Sulfur Levels for Direct Injection (DI) Diesel Engines

The Total Base Number (TBN) for an oil depends on the fuel sulfur level. For direct injection engines that use distillate fuel, the minimum TBN of the new oil must be 10 times the fuel sulfur level. The TBN is defined by “ASTM D2896”. The minimum TBN of the oil is 5 regardless of fuel sulfur level. Illustration 28 demonstrates the TBN.

Use the following guidelines for fuel sulfur levels that exceed 1.5 percent:

- Choose an oil with the highest TBN that meets one of these classifications: EMA DHD-1 and API CH-4.
- Reduce the oil change interval. Base the oil change interval on the oil analysis. Ensure that the oil analysis includes the condition of the oil and a wear metal analysis.

Excessive piston deposits can be produced by an oil with a high TBN. These deposits can lead to a loss of control of the oil consumption and to the polishing of the cylinder bore.

NOTICE

Operating Direct Injection (DI) diesel engines with fuel sulphur levels over 0.5 percent will require shortened oil change intervals in order to help maintain adequate wear protection.

<table>
<thead>
<tr>
<th>Percentage of Sulfur in the fuel</th>
<th>Oil change interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower than 0.5</td>
<td>Normal</td>
</tr>
<tr>
<td>0.5 to 1.0</td>
<td>0.75 of normal</td>
</tr>
<tr>
<td>Greater than 1.0</td>
<td>0.50 of normal</td>
</tr>
</tbody>
</table>

Lubricant Viscosity Recommendations for Direct Injection (DI) Diesel Engines

The correct SAE viscosity grade of oil is determined by the minimum ambient temperature during cold engine start-up, and the maximum ambient temperature during engine operation.

Refer to Table 8 (minimum temperature) in order to determine the required oil viscosity for starting a cold engine.

Refer to Table 8 (maximum temperature) in order to select the oil viscosity for engine operation at the highest ambient temperature that is anticipated.

Generally, use the highest oil viscosity that is available to meet the requirement for the temperature at start-up.
Synthetic Base Stock Oils

Synthetic base oils are acceptable for use in these engines if these oils meet the performance requirements that are specified for the engine.

Synthetic base oils generally perform better than conventional oils in the following two areas:

- Synthetic base oils have improved flow at low temperatures especially in arctic conditions.
- Synthetic base oils have improved oxidation stability especially at high operating temperatures.

Some synthetic base oils have performance characteristics that enhance the service life of the oil. Perkins does not recommend the automatic extending of the oil change intervals for any type of oil.

Re-refined Base Stock Oils

Re-refined base stock oils are acceptable for use in Perkins engines if these oils meet the performance requirements that are specified by Perkins. Re-refined base stock oils can be used exclusively in finished oil or in a combination with new base stock oils. The US military specifications and the specifications of other heavy equipment manufacturers also allow the use of re-refined base stock oils that meet the same criteria.

The process that is used to make re-refined base stock oil should adequately remove all wear metals that are in the used oil and all the additives that are in the used oil. The process that is used to make re-refined base stock oil generally involves the process of vacuum distillation and hydrotreating the used oil. Filtering is adequate for the production of high quality, re-refined base stock oil.

Lubricants for Cold Weather

When an engine is started and an engine is operated in ambient temperatures below \(-20^\circ C\) \((-4^\circ F)\), use multigrade oils that are capable of flowing in low temperatures.

These oils have lubricant viscosity grades of SAE 0W or SAE 5W.

When an engine is started and operated in ambient temperatures below \(-30^\circ C\) \((-22^\circ F)\), use a synthetic base stock multigrade oil with an 0W viscosity grade or with a 5W viscosity grade. Use an oil with a pour point that is lower than \(-50^\circ C\) \((-58^\circ F)\).

The number of acceptable lubricants is limited in cold weather conditions. Perkins recommends the following lubricants for use in cold weather conditions:

First Choice – Use oil with an EMA DHD-1 Recommended Guideline. Use a CH-4 oil that has an API license. The oil should be either SAE 0W20, SAE 0W30, SAE 0W40, SAE 5W30, or SAE 5W40 lubricant viscosity grade.

Second Choice – Use an oil that has a CH-4 additive package. Although the oil has not been tested for the requirements of the API license, the oil must be either SAE 0W20, SAE 0W30, SAE 0W40, SAE 5W30, or SAE 5W40.

NOTICE

Shortened engine service life could result if second choice oils are used.

Aftermarket Oil Additives

Perkins does not recommend the use of aftermarket additives in oil. It is not necessary to use aftermarket additives in order to achieve the engine’s maximum service life or rated performance. Fully formulated, finished oils consist of base oils and of commercial additive packages. These additive packages are blended into the base oils at precise percentages in order to help provide finished oils with performance characteristics that meet industry standards.

There are no industry standard tests that evaluate the performance or the compatibility of aftermarket additives in finished oil. Aftermarket additives may not be compatible with the finished oil’s additive package, which could lower the performance of the finished oil. The aftermarket additive could fail to mix with the finished oil. This could produce sludge in the crankcase. Perkins discourages the use of aftermarket additives in finished oils.

To achieve the best performance from a Perkins engine, conform to the following guidelines:

Table 8: Engine Oil Viscosity

<table>
<thead>
<tr>
<th>EMA LRG-1 API CH-4 Viscosity Grade</th>
<th>Ambient Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
</tr>
<tr>
<td>SAE 0W20</td>
<td>(-40^\circ C) ((-40^\circ F))</td>
</tr>
<tr>
<td>SAE 0W30</td>
<td>(-40^\circ C) ((-40^\circ F))</td>
</tr>
<tr>
<td>SAE 0W40</td>
<td>(-40^\circ C) ((-40^\circ F))</td>
</tr>
<tr>
<td>SAE 5W30</td>
<td>(-30^\circ C) ((-22^\circ F))</td>
</tr>
<tr>
<td>SAE 5W40</td>
<td>(-30^\circ C) ((-22^\circ F))</td>
</tr>
<tr>
<td>SAE 10W30</td>
<td>(-20^\circ C) ((-4^\circ F))</td>
</tr>
<tr>
<td>SAE 15W40</td>
<td>(-10^\circ C) ((14^\circ F))</td>
</tr>
</tbody>
</table>
Select the correct oil, or a commercial oil that meets the “EMA Recommended Guideline on Diesel Engine Oil” or the recommended API classification.

See the appropriate “Lubricant Viscosities” table in order to find the correct oil viscosity grade for your engine.

At the specified interval, service the engine. Use new oil and install a new oil filter.

Perform maintenance at the intervals that are specified in the Operation and Maintenance Manual, "Maintenance Interval Schedule".

Oil analysis

Some engines may be equipped with an oil sampling valve. If oil analysis is required the oil sampling valve is used to obtain samples of the engine oil. The oil analysis will complement the preventive maintenance program.

The oil analysis is a diagnostic tool that is used to determine oil performance and component wear rates. Contamination can be identified and measured through the use of the oil analysis. The oil analysis includes the following tests:

- The Wear Rate Analysis monitors the wear of the engine's metals. The amount of wear metal and type of wear metal that is in the oil is analyzed. The increase in the rate of engine wear metal in the oil is as important as the quantity of engine wear metal in the oil.

- Tests are conducted in order to detect contamination of the oil by water, glycol or fuel.

- The Oil Condition Analysis determines the loss of the oil's lubricating properties. An infrared analysis is used to compare the properties of new oil to the properties of the used oil sample. This analysis allows technicians to determine the amount of deterioration of the oil during use. This analysis also allows technicians to verify the performance of the oil according to the specification during the entire oil change interval.

Fuel Specifications

Fuel Recommendations

To get the correct power and performance from the engine, use a fuel of the correct quality. The recommended fuel specification for Perkins engines is shown below:

- Cetane number___________________________45 minimum
- Viscosity_________ 2.0 to 4.5 cSt at 40 °C (104 °F)
- Density___________________________0.835 to 0.855 Kg/liter
- Sulfur_______________________0.2% of mass, maximum
- Distillation___________________85% at 350 °C (662 °F)
- Lubricity______________________________460 micrometers maximum wear scar on “ISO 12156 - 1”

Cetane number

This indicates the properties of ignition of the fuel. Fuel with a low cetane number can be the root cause of problems during cold start. This will affect combustion.

Viscosity

This is the resistance to flow of a fluid. If this resistance is outside the limits, the engine and the engine starting performance in particular can be affected.

Sulfur

High sulfur content of the fuel is not normally found in Europe, North America or Australasia. This can cause engine wear. When only high sulfur fuels are available, it will be necessary that high alkaline lubricating oil is used in the engine or that the lubricating oil change interval is reduced.

Distillation

This is an indication of the mixture of different hydrocarbons in the fuel. A high ratio of light weight hydrocarbons can affect the characteristics of combustion.

Lubricity

This is the capability of the fuel to prevent pump wear.

Diesel engines have the ability to burn a wide variety of fuels. These fuels are divided into four general groups:

- Group 1 (preferred fuels)
- Group 2 (permissible fuels)
- Group 3 (aviation kerosene fuels)
- Other fuels

Group 1 (preferred fuels): Specification

“DERV to EN590”
Note: Only use Arctic fuels when the temperature is below 0 °C (32 °F). Do not use Arctic fuels when the ambient temperature is above 0 °C (32 °F). To ensure that the time period between cranking the engine and first fire is kept to a minimum, only use fuel of the correct viscosity and at the correct temperature.

Gas oil to “BS2869 Class A2”

“ASTM D975 - 91 Class 2D” This can only be used if the fuel has the correct specification of lubricity.

“JIS K2204 (1992) Grades 1,2,3 and Special Grade 3” This can only be used if the fuel has the correct specification of lubricity.

Note: If low sulfur or low sulfur aromatic fuels are used, then fuel additives can be used to increase lubricity.

Group 2 (permissible fuels): Specification

These fuel specifications are considered acceptable for issues of warranty. However, these fuels may reduce the life of the engine, the engine’s maximum power and the engine’s fuel efficiency.

“ASTM D975 - 91 Class 1D”

“JP7, Mil T38219”

“NATO F63”

NOTICE
These fuels should have a wear scar value of 650 micrometers maximum *HFRR to ISO 12156 - 1.*

Group 3 (aviation kerosene fuels): Specification

These fuels need additives to achieve lubricity of 650 micrometers wear scar and the reliability of the fuel pump and fuel injectors will be reduced. The fuel injection pump is not covered by a warranty, even when the additives are included.

“JP5 MIL T5624 (Avcat FSII, NATO F44”

“JP8 T83133 (Avtur FSII, NATO F34“

“Jet A”

“Jet A1, NATO F35, XF63”

Low temperature fuels

Special fuels for use in cold weather may be available for engine operation at temperatures below 0 °C (32 °F). These fuels limit the formation of wax in the fuel oil at low temperatures. If wax forms in the fuel oil, this could stop the flow of fuel oil through the filter.

Note: These fuels that lack lubricity may cause the following problems:

- Low engine power
- Difficult starting in hot conditions or in cold conditions
- White smoke
- Deterioration of emissions and misfire at certain operating conditions

Biofuel: Specification

Biofuel: A 5% mix of RME to EN14214 in conventional fuel is permitted.

NOTICE
Water emulsion fuels: These fuels are not permitted

Refer to the following fuel specifications for North America.

The preferred fuels provide maximum engine service life and performance. The preferred fuels are distillate fuels. These fuels are commonly called diesel fuel or gas oil.

The permissible fuels are crude oils or blended fuels. Use of these fuels can result in higher maintenance costs and in reduced engine service life.

Diesel fuels that meet the specifications in Table 9 will help to provide maximum engine service life and performance. In North America, diesel fuel that is identified as No. 2-D in “ASTM D975” generally meets the specifications. Table 9 is for diesel fuels that are distilled from crude oil. Diesel fuels from other sources could exhibit detrimental properties that are not defined or controlled by this specification.

Table 9

<table>
<thead>
<tr>
<th>Perkins Specifications for Distillate Diesel Fuel</th>
<th>Requirements</th>
<th>ASTM Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifications</td>
<td>Aromatics</td>
<td>35% maximum</td>
</tr>
<tr>
<td>Ash</td>
<td>0.02% maximum (weight)</td>
<td>“D482”</td>
</tr>
</tbody>
</table>

(continued)
Carbon Residue on 10% Bottoms | 0.35% maximum (weight) | "D524"
Cetane Number | 40 minimum (DI engines) | "D613"
Cloud Point | The cloud point must not exceed the lowest expected ambient temperature. | -
Copper Strip Corrosion | No. 3 maximum | "D130"
Distillation | 10% at 282 °C (540 °F) maximum | "D86"
Flash Point | legal limit | "D93"
API Gravity | 30 minimum
45 maximum | "D287"
Pour Point | 6 °C (10 °F) minimum below ambient temperature | "D97"
Sulfur (1) | 0.2% maximum | "D3605"
Kinematic Viscosity (2) | 2.0 cSt minimum and 4.5 cSt maximum at 40 °C (104 °F) | "D445"
Water and Sediment | 0.1% maximum | "D1796"
Water | 0.1% maximum | "D1744"
Sediment | 0.05% maximum (weight) | "D473"

(1) Perkins fuel systems and engine components can operate on high sulfur fuels. Fuel sulfur levels affect exhaust emissions. High sulfur fuels also increase the potential for corrosion of internal components. Fuel sulfur levels above 0.5 percent may significantly shorten the oil change interval. For additional information, see this publication, “Fluid Recommendations/Engine Oil” topic (Maintenance Section).
(2) The values of the fuel viscosity are the values as the fuel is delivered to the fuel injection pumps. If a fuel with a low viscosity is used, cooling of the fuel may be required to maintain a 1.4 cSt viscosity at the fuel injection pump. Fuels with a high viscosity might require fuel heaters in order to bring down the viscosity to a 20 cSt viscosity.
(3) Follow the test conditions and procedures for gasoline (motor).
(4) The lubricity of a fuel is a concern with low sulfur fuel. To determine the lubricity of the fuel, use either the “ASTM D6078 Scuffing Load Wear Test (SBOCLE)” or the “ASTM D6079 High Frequency Reciprocating Rig (HFRR)” test. If the lubricity of a fuel does not meet the minimum requirements, consult your fuel supplier. Do not treat the fuel without consulting the fuel supplier. Some additives are not compatible. These additives can cause problems in the fuel system.

NOTICE

Operating with fuels that do not meet the Perkins recommendations can cause the following effects: Starting difficulty, poor combustion, deposits in the fuel injectors, reduced service life of the fuel system, deposits in the combustion chamber, and reduced service life of the engine.

NOTICE

Heavy Fuel Oil (HFO), Residual fuel, or Blended fuel must NOT be used in Perkins diesel engines. Severe component wear and component failures will result if HFO type fuels are used in engines that are configured to use distillate fuel.

In extreme cold ambient conditions, you may use the distillate fuels that are specified in Table 10. However, the fuel that is selected must meet the requirements that are specified in Table 9. These fuels are intended to be used in operating temperatures that are down to −54 °C (−65 °F).
Table 10

<table>
<thead>
<tr>
<th>Specification</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>"MIL-T-5624R"</td>
<td>JP-5</td>
</tr>
<tr>
<td>"ASTM D1655"</td>
<td>Jet-A-1</td>
</tr>
<tr>
<td>"MIL-T-83133D"</td>
<td>JP-8</td>
</tr>
</tbody>
</table>

(1) The fuels that are listed in this Table may not meet the requirements that are specified in the "Perkins Specifications for Distillate Diesel Fuel" Table. Consult the supplier for the recommended additives in order to maintain the correct fuel lubricity.

These fuels are lighter than the No. 2 grades of fuel. The cetane number of the fuels in Table 10 must be at least 40. If the viscosity is below 1.4 cSt at 38 °C (100 °F), use the fuel only in temperatures below 0 °C (32 °F). Do not use any fuels with a viscosity of less than 1.2 cSt at 38 °C (100 °F). Fuel cooling may be required in order to maintain the minimum viscosity of 1.4 cSt at the fuel injection pump.

There are many other diesel fuel specifications that are published by governments and by technological societies. Usually, those specifications do not review all the requirements that are addressed in this specification. To ensure optimum engine performance, a complete fuel analysis should be obtained before engine operation. The fuel analysis should include all of the properties that are listed in Table 9.

Cooling System Specifications

General Coolant Information

NOTICE
Never add coolant to an overheated engine. Engine damage could result. Allow the engine to cool first.

NOTICE
If the engine is to be stored in, or shipped to an area with below freezing temperatures, the cooling system must be either protected to the lowest outside temperature or drained completely to prevent damage.

NOTICE
Frequently check the specific gravity of the coolant for proper freeze protection or for anti-boil protection.

Clean the cooling system for the following reasons:

- Contamination of the cooling system
- Overheating of the engine
- Foaming of the coolant

TABLE 11

<table>
<thead>
<tr>
<th>Property</th>
<th>Maximum Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride (Cl)</td>
<td>40 mg/L</td>
</tr>
<tr>
<td>Sulfate (SO₄)</td>
<td>100 mg/L</td>
</tr>
<tr>
<td>Total Hardness</td>
<td>170 mg/L</td>
</tr>
<tr>
<td>Total Solids</td>
<td>340 mg/L</td>
</tr>
<tr>
<td>Acidity</td>
<td>pH of 5.5 to 9.0</td>
</tr>
</tbody>
</table>

For a water analysis, consult one of the following sources:

- Local water utility company
- Agricultural agent
- Independent laboratory

NOTICE
Never operate an engine without water temperature regulators in the cooling system. Water temperature regulators help to maintain the engine coolant at the proper operating temperature. Cooling system problems can develop without water temperature regulators.

Many engine failures are related to the cooling system. The following problems are related to cooling system failures: Overheating, leakage of the water pump, and plugged radiators or heat exchangers.

These failures can be avoided with correct cooling system maintenance. Cooling system maintenance is as important as maintenance of the fuel system and the lubrication system. Quality of the coolant is as important as the quality of the fuel and the lubricating oil.

Coolant is normally composed of three elements: Water, additives, and glycol.

Water

Water is used in the cooling system in order to transfer heat.

Distilled water or deionized water is recommended for use in engine cooling systems.

DO NOT use the following types of water in cooling systems: Hard water, softened water that has been conditioned with salt, and sea water.

If distilled water or deionized water is not available, use water with the properties that are listed in Table 11.
Additives

Additives help to protect the metal surfaces of the cooling system. A lack of coolant additives or insufficient amounts of additives enable the following conditions to occur:

- Corrosion
- Formation of mineral deposits
- Rust
- Scale
- Foaming of the coolant

Many additives are depleted during engine operation. These additives must be replaced periodically.

Additives must be added at the correct concentration. Overconcentration of additives can cause the inhibitors to drop out-of-solution. The deposits can enable the following problems to occur:

- Formation of gel compounds
- Reduction of heat transfer
- Leakage of the water pump seal
- Plugging of radiators, coolers, and small passages

Glycol

Glycol in the coolant helps to provide protection against the following conditions:

- Boiling
- Freezing
- Cavitation of the water pump

For optimum performance, Perkins recommends a 1:1 mixture of a water/glycol solution.

Note: Use a mixture that will provide protection against the lowest ambient temperature.

Note: 100 percent pure glycol will freeze at a temperature of −23 °C (−9 °F).

Most conventional coolant/antifreezes use ethylene glycol. Propylene glycol may also be used. In a 1:1 mixture with water, ethylene and propylene glycol provide similar protection against freezing and boiling. See Tables 12 and 13.

<table>
<thead>
<tr>
<th>Table 12</th>
<th>Ethylene Glycol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration</td>
<td>Freeze Protection</td>
</tr>
<tr>
<td>50 Percent</td>
<td>−36 °C (−33 °F)</td>
</tr>
<tr>
<td>60 Percent</td>
<td>−51 °C (−60 °F)</td>
</tr>
</tbody>
</table>

NOTICE

Do not use propylene glycol in concentrations that exceed 50 percent glycol because of propylene glycol’s reduced heat transfer capability. Use ethylene glycol in conditions that require additional protection against boiling or freezing.

<table>
<thead>
<tr>
<th>Table 13</th>
<th>Propylene Glycol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration</td>
<td>Freeze Protection</td>
</tr>
<tr>
<td>50 Percent</td>
<td>−29 °C (−20 °F)</td>
</tr>
</tbody>
</table>

To check the concentration of glycol in the coolant, measure the specific gravity of the coolant.

Coolant Recommendations

The following two coolants are used in Perkins diesel engines:

Preferred – Perkins Extended Life Coolant (ELC)

Acceptable – A commercial heavy-duty coolant/antifreeze that meets “ASTM D4985” specifications

NOTICE

Do not use a commercial coolant/antifreeze that only meets the ASTM D3306 specification. This type of coolant/antifreeze is made for light automotive applications.

Perkins recommends a 1:1 mixture of water and glycol. This mixture of water and glycol will provide optimum heavy-duty performance as a coolant/antifreeze. This ratio may be increased to 1:2 water to glycol if extra freezing protection is required.

Note: A commercial heavy-duty coolant/antifreeze that meets “ASTM D4985” specifications MAY require a treatment with an SCA at the initial fill. Read the label or the instructions that are provided by the OEM of the product.
In stationary engine applications and marine engine applications that do not require anti-boil protection or freeze protection, a mixture of SCA and water is acceptable. Perkins recommends a six percent to eight percent concentration of SCA in those cooling systems. Distilled water or deionized water is preferred. Water which has the recommended properties may be used.

Engines that are operating in an ambient temperature above 43 °C (109.4 °F) must use SCA and water. Engines that operate in an ambient temperature above 43 °C (109.4 °F) and below 0 °C (32 °F) due to seasonal variations consult your Perkins dealer or your Perkins distributor for the correct level of protection.

Table 14

<table>
<thead>
<tr>
<th>Coolant Type</th>
<th>Service Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perkins ELC</td>
<td>6,000 Service Hours or Three Years</td>
</tr>
<tr>
<td>Commercial Heavy-Duty Coolant/Antifreeze that meets "ASTM D4985"</td>
<td>3000 Service Hours or Two Years</td>
</tr>
<tr>
<td>Perkins POWERPART SCA</td>
<td>3000 Service Hours or Two Years</td>
</tr>
<tr>
<td>Commercial SCA and Water</td>
<td>3000 Service Hours or Two Years</td>
</tr>
</tbody>
</table>

Extended Life Coolant (ELC)

Perkins provides Extended Life Coolant (ELC) for use in the following applications:

- Heavy-duty spark ignited gas engines
- Heavy-duty diesel engines
- Automotive applications

The anti-corrosion package for ELC is different from the anti-corrosion package for other coolants. ELC is an ethylene glycol base coolant. However, ELC contains organic corrosion inhibitors and antifoam agents with low amounts of nitrite. Perkins ELC has been formulated with the correct amount of these additives in order to provide superior corrosion protection for all metals in engine cooling systems.

ELC extends the service life of the coolant to 12000 service hours or six years. ELC does not require a frequent addition of a Supplemental Coolant Additive (SCA). An Extender is the only additional maintenance that is needed at 6000 service hours or one half of the ELC service life.

ELC is available in a 1:1 premixed cooling solution with distilled water. The Premixed ELC provides freeze protection to −36 °C (−33 °F). The Premixed ELC is recommended for the initial fill of the cooling system. The Premixed ELC is also recommended for topping off the cooling system.

ELC Concentrate is also available. ELC Concentrate can be used to lower the freezing point to −51 °C (−60 °F) for arctic conditions.

Containers of several sizes are available. Consult your Perkins dealer or your Perkins distributor for the part numbers.

ELC Cooling System Maintenance

Correct additions to the Extended Life Coolant

NOTICE

Use only Perkins products for pre-mixed or concentrated coolants.

Use only Perkins Extender with Extended Life Coolant.

Mixing Extended Life Coolant with other products reduces the Extended Life Coolant service life. Failure to follow the recommendations can reduce cooling system components life unless appropriate corrective action is performed.

In order to maintain the correct balance between the antifreeze and the additives, you must maintain the recommended concentration of Extended Life Coolant (ELC). Lowering the proportion of antifreeze lowers the proportion of additive. This will lower the ability of the coolant to protect the system from pitting, from cavitation, from erosion, and from deposits.

NOTICE

Do not use a conventional coolant to top-off a cooling system that is filled with Extended Life Coolant (ELC).

Do not use standard supplemental coolant additive (SCA). Only use ELC Extender in cooling systems that are filled with ELC.

NOTICE

When using Perkins ELC, do not use standard SCA’s or SCA filters.
ELC Cooling System Cleaning

Note: If the cooling system is already using ELC, cleaning agents are not required to be used at the specified coolant change interval. Cleaning agents are only required if the system has been contaminated by the addition of some other type of coolant or by cooling system damage.

Clean water is the only cleaning agent that is required when ELC is drained from the cooling system.

After the cooling system is drained and after the cooling system is refilled, operate the engine while the cooling system filler cap is removed. Operate the engine until the coolant level reaches the normal operating temperature and until the coolant level stabilizes. As needed, add the coolant mixture in order to fill the system to the specified level.

Changing to Perkins ELC

To change from heavy-duty coolant/antifreeze to the Perkins ELC, perform the following steps:

1. Drain the coolant into a suitable container.
2. Dispose of the coolant according to local regulations.
3. Flush the system with clean water in order to remove any debris.
4. Use Perkins cleaner to clean the system. Follow the instruction on the label.
5. Drain the cleaner into a suitable container. Flush the cooling system with clean water.
6. Fill the cooling system with clean water and operate the engine until the engine is warmed to 49° to 66°C (120° to 150°F).

ELC Cooling System Contamination

NOTICE

Incorrect or incomplete flushing of the cooling system can result in damage to copper and other metal components.

To avoid damage to the cooling system, make sure to completely flush the cooling system with clean water. Continue to flush the system until all the signs of the cleaning agent are gone.

7. Drain the cooling system into a suitable container and flush the cooling system with clean water.

Note: The cooling system cleaner must be thoroughly flushed from the cooling system. Cooling system cleaner that is left in the system will contaminate the coolant. The cleaner may also corrode the cooling system.

8. Repeat Steps 6 and 7 until the system is completely clean.

9. Fill the cooling system with the Perkins Premixed ELC.
Commercial Heavy-Duty Coolant/ Antifreeze and SCA

Commercial Heavy-Duty Coolant which contains Amine as part of the corrosion protection system must not be used.

Never operate an engine without water temperature regulators in the cooling system. Water temperature regulators help to maintain the engine coolant at the correct operating temperature. Cooling system problems can develop without water temperature regulators.

Check the coolant/antifreeze (glycol concentration) in order to ensure adequate protection against boiling or freezing. Perkins recommends the use of a refractometer for checking the glycol concentration.

Perkins engine cooling systems should be tested at 500 hour intervals for the concentration of Supplemental Coolant Additive (SCA).

Additions of SCA are based on the results of the test. An SCA that is liquid may be needed at 500 hour intervals.

Refer to Table 15 for part numbers and for quantities of SCA.

Table 15

<table>
<thead>
<tr>
<th>Perkins Liquid SCA</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>21825755</td>
<td></td>
</tr>
</tbody>
</table>

Adding the SCA to Heavy-Duty Coolant at the Initial Fill

Commercial heavy-duty coolant/antifreeze that meets “ASTM D4985” specifications MAY require an addition of SCA at the initial fill. Read the label or the instructions that are provided by the OEM of the product.

Use the equation that is in Table 16 to determine the amount of Perkins SCA that is required when the cooling system is initially filled.

Table 16

| Equation For Adding The SCA To The Heavy-Duty Coolant At The Initial Fill |
|-----------------------------|-----------------------------|
| $V \times 0.045 = X$ | |

V is the total volume of the cooling system.
X is the amount of SCA that is required.

Example Of The Equation For Adding The SCA To The Heavy-Duty Coolant At The Initial Fill

<table>
<thead>
<tr>
<th>Total Volume of the Cooling System (V)</th>
<th>Multiplication Factor</th>
<th>Amount of SCA that is Required (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 L (4 US gal)</td>
<td>$\times 0.045$</td>
<td>0.7 L (24 oz)</td>
</tr>
</tbody>
</table>

Adding The SCA to The Heavy-Duty Coolant For Maintenance

Heavy-duty coolant/antifreeze of all types REQUIRE periodic additions of an SCA.

Test the coolant/antifreeze periodically for the concentration of SCA. For the interval, refer to the Operation and Maintenance Manual, “Maintenance Interval Schedule” (Maintenance Section). Test the concentration of SCA.

Additions of SCA are based on the results of the test. The size of the cooling system determines the amount of SCA that is needed.

Use the equation that is in Table 18 to determine the amount of Perkins SCA that is required, if necessary:

Table 18

<table>
<thead>
<tr>
<th>Equation For Adding The SCA To The Heavy-Duty Coolant For Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V \times 0.014 = X$</td>
</tr>
</tbody>
</table>

V is the total volume of the cooling system.
X is the amount of SCA that is required.

Example Of The Equation For Adding The SCA To The Heavy-Duty Coolant For Maintenance

<table>
<thead>
<tr>
<th>Total Volume of the Cooling System (V)</th>
<th>Multiplication Factor</th>
<th>Amount of SCA that is Required (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 L (4 US gal)</td>
<td>$\times 0.014$</td>
<td>0.2 L (7 oz)</td>
</tr>
</tbody>
</table>
Cleaning the System of Heavy-Duty Coolant/Antifreeze

Perkins cooling system cleaners are designed to clean the cooling system of harmful scale and corrosion. Perkins cooling system cleaners dissolve mineral scale, corrosion products, light oil contamination and sludge.

- Clean the cooling system after used coolant is drained or before the cooling system is filled with new coolant.

- Clean the cooling system whenever the coolant is contaminated or whenever the coolant is foaming.
Maintenance Interval Schedule

Ensure that the Safety Information, Warnings, and Instructions are read and understood before operation or maintenance procedures are performed.

Before each consecutive interval is performed, all of the maintenance requirements from the previous interval must also be performed.

When Required

- **Battery - Replace** .. 61
- **Battery or Battery Cable - Disconnect** 62
- **Engine - Clean** .. 69
- **Engine Air Cleaner Element (Dual Element) - Clean/Replace** .. 70
- **Engine Air Cleaner Element (Single Element) - Inspect/Replace** .. 72
- **Engine Oil Sample - Obtain** 75
- **Fuel System - Prime** ... 79
- **Severe Service Application - Check** 85

Daily

- **Alternator and Fan Belts - Inspect** 61
- **Cooling System Coolant Level - Check** 67
- **Driven Equipment - Check** 69
- **Engine Air Cleaner Service Indicator - Inspect** 72
- **Engine Air Precleaner - Check/Clean** 73
- **Engine Oil Level - Check** 75
- **Fuel System Primary Filter/Water Separator - Drain** Julian 81
- **Walk-Around Inspection** .. 87

Every 50 Service Hours or Weekly

- **Fuel Tank Water and Sediment - Drain** 83

Every 500 Service Hours

- **Engine Valve Lash - Inspect/Adjust** 78

Every 500 Service Hours or 1 Year

- **Alternator and Fan Belts - Replace** 61
- **Battery Electrolyte Level - Check** 62
- **Cooling System Supplemental Coolant Additive (SCA) - Test/Add** ... 68
- **Crankcase Breather (Canister) - Replace** 68
- **Engine Air Cleaner Element (Dual Element) - Clean/Replace** .. 70
- **Engine Air Cleaner Element (Single Element) - Inspect/Replace** .. 72
- **Engine Crankcase Breather Element - Replace** 74
- **Engine Oil and Filter - Change** 76
- **Fuel System Filter - Replace** 80

Every 2000 Service Hours

- **Aftercooler Core - Inspect** 60
- **Alternator - Inspect** ... 61
- **Engine Mounts - Inspect** .. 75
- **Starting Motor - Inspect** ... 86
- **Turbocharger - Inspect** .. 86
- **Water Pump - Inspect** .. 88

Every 3000 Service Hours or 2 Years

- **Cooling System Coolant (Commercial Heavy-Duty) - Change** .. 63

Every 4000 Service Hours

- **Aftercooler Core - Clean/Test** 60

Every 6000 Service Hours or 3 Years

- **Cooling System Coolant Extender (ELC) - Add** ... 66

Every 12 000 Service Hours or 6 Years

- **Cooling System Coolant (ELC) - Change** 64

Fuel System Primary Filter (Water Separator)
- **Element - Replace** ... 82
- **Hoses and Clamps - Inspect/Replace** 84
- **Radiator - Clean** .. 85
Aftercooler Core - Clean/Test

1. Remove the core. Refer to the OEM information for the correct procedure.

2. Turn the aftercooler core upside-down in order to remove debris.

3. Pressurized air is the preferred method for removing loose debris. Direct the air in the opposite direction of the fan's air flow. Hold the nozzle approximately 6 mm (.25 inch) away from the fins. Slowly move the air nozzle in a direction that is parallel with the tubes. This will remove debris that is between the tubes.

4. Pressurized water may also be used for cleaning. The maximum water pressure for cleaning purposes must be less than 275 kPa (40 psi). Use pressurized water in order to soften mud. Clean the core from both sides.

5. Back flush the core with a suitable cleaner.

6. Steam clean the core in order to remove any residue. Flush the fins of the aftercooler core. Remove any other trapped debris.

7. Wash the core with hot, soapy water. Rinse the core thoroughly with clean water.

WARNING

Personal injury can result from air pressure.

Personal injury can result without following proper procedure. When using pressure air, wear a protective face shield and protective clothing.

Maximum air pressure at the nozzle must be less than 205 kPa (30 psi) for cleaning purposes.

8. Dry the core with compressed air. Direct the air in the reverse direction of the normal flow.

9. Inspect the core in order to ensure cleanliness. Pressure test the core. If necessary, repair the core.

10. Install the core. Refer to the OEM information for the correct procedure.

11. After cleaning, start the engine and accelerate the engine to high idle rpm. This will help in the removal of debris and drying of the core. Stop the engine. Use a light bulb behind the core in order to inspect the core for cleanliness. Repeat the cleaning, if necessary.

Aftercooler Core - Inspect

Note: Adjust the frequency of cleaning according to the effects of the operating environment.

Inspect the aftercooler for these items: damaged fins, corrosion, dirt, grease, insects, leaves, oil, and other debris. Clean the aftercooler, if necessary.

For air-to-air aftercoolers, use the same methods that are used for cleaning radiators.

WARNING

Personal injury can result from air pressure.

Personal injury can result without following proper procedure. When using pressure air, wear a protective face shield and protective clothing.

Maximum air pressure at the nozzle must be less than 205 kPa (30 psi) for cleaning purposes.
After cleaning, start the engine and accelerate the engine to high idle rpm. This will help in the removal of debris and drying of the core. Stop the engine. Use a light bulb behind the core in order to inspect the core for cleanliness. Repeat the cleaning, if necessary.

Inspect the fins for damage. Bent fins may be opened with a “comb”.

Note: If parts of the aftercooler system are repaired or replaced, a leak test is highly recommended.

Inspect these items for good condition: Welds, mounting brackets, air lines, connections, clamps, and seals. Make repairs, if necessary.

Alternator - Inspect

Perkins recommends a scheduled inspection of the alternator. Inspect the alternator for loose connections and correct battery charging. Check the ammeter (if equipped) during engine operation in order to ensure correct battery performance and/or correct performance of the electrical system. Make repairs, as required.

Check the alternator and the battery charger for correct operation. If the batteries are correctly charged, the ammeter reading should be very near zero. All batteries should be kept charged. The batteries should be kept warm because temperature affects the cranking power. If the battery is too cold, the battery will not crank the engine. When the engine is not run for long periods of time or if the engine is run for short periods, the batteries may not fully charge. A battery with a low charge will freeze more easily than a battery with a full charge.

Alternator and Fan Belts - Inspect

NOTICE

Ensure that the engine is stopped before any servicing or repair is performed.

To maximize the engine performance, inspect the belt (1) for wear and for cracking. Replace the belt if the belt is worn or damaged.

- If the belt (1) has more than four cracks per 25.4000 mm (1 inch) the belt must be replaced.
- Check the belt of cracks, splits, glazing, grease, and splitting.

Alternator and Fan Belts - Replace

Refer to Disassembly and Assembly Manual, “Alternator Belt - Remove and Install”.

Battery - Replace

WARNING

Batteries give off combustible gases which can explode. A spark can cause the combustible gases to ignite. This can result in severe personal injury or death.

Ensure proper ventilation for batteries that are in an enclosure. Follow the proper procedures in order to help prevent electrical arcs and/or sparks near batteries. Do not smoke when batteries are serviced.
The battery cables or the batteries should not be removed with the battery cover in place. The battery cover should be removed before any servicing is attempted.

Removing the battery cables or the batteries with the cover in place may cause a battery explosion resulting in personal injury.

1. Switch the engine to the OFF position. Remove all electrical loads.
2. Turn off any battery chargers. Disconnect any battery chargers.
3. The NEGATIVE "-" cable connects the NEGATIVE "-" battery terminal to the NEGATIVE "-" terminal on the starting motor. Disconnect the cable from the NEGATIVE "-" battery terminal.
4. The POSITIVE "+" cable connects the POSITIVE "+" battery terminal to the POSITIVE "+" terminal on the starting motor. Disconnect the cable from the POSITIVE "+" battery terminal.

Note: Always recycle a battery. Never discard a battery. Dispose of used batteries to an appropriate recycling facility.

5. Remove the used battery.
6. Install the new battery.

Note: Before the cables are connected, ensure that the engine start switch is OFF.

7. Connect the cable from the starting motor to the POSITIVE "+" battery terminal.
8. Connect the NEGATIVE "-" cable to the NEGATIVE "-" battery terminal.

Battery Electrolyte Level - Check

When the engine is not run for long periods of time or when the engine is run for short periods, the batteries may not fully recharge. Ensure a full charge in order to help prevent the battery from freezing. If batteries are correctly charged, the ammeter reading should be very near zero, when the engine is in operation.

Note: All lead-acid batteries contain sulfuric acid which can burn the skin and clothing. Always wear a face shield and protective clothing when working on or near batteries.

1. Remove the filler caps. Maintain the electrolyte level to the "FULL" mark on the battery.

 If the addition of water is necessary, use distilled water. If distilled water is not available use clean water that is low in minerals. Do not use artificially softened water.

2. Check the condition of the electrolyte with a suitable battery tester.
3. Install the caps.
4. Keep the batteries clean.

 Clean the battery case with one of the following cleaning solutions:
 - A mixture of 0.1 kg (0.2 lb) of washing soda or baking soda and 1 L (1 qt) of clean water
 - A mixture of 0.1 L (0.11 qt) of ammonia and 1 L (1 qt) of clean water

 Thoroughly rinse the battery case with clean water.

Battery or Battery Cable - Disconnect

The battery cables or the batteries should not be removed with the battery cover in place. The battery cover should be removed before any servicing is attempted.

Removing the battery cables or the batteries with the cover in place may cause a battery explosion resulting in personal injury.

1. Turn the start switch to the OFF position. Turn the ignition switch (if equipped) to the OFF position and remove the key and all electrical loads.
2. Disconnect the negative battery terminal. Ensure that the cable cannot contact the terminal. When four 12 volt batteries are involved, two negative connection must be disconnected.
3. Remove the positive connection.

4. Clean all disconnected connection and battery terminals.

5. Use a fine grade of sandpaper to clean the terminals and the cable clamps. Clean the items until the surfaces are bright or shiny. DO NOT remove material excessively. Excessive removal of material can cause the clamps to not fit correctly. Coat the clamps and the terminals with a suitable silicone lubricant or petroleum jelly.

6. Tape the cable connections in order to help prevent accidental starting.

7. Proceed with necessary system repairs.

8. In order to connect the battery, connect the positive connection before the negative connector.

Cooling System Coolant (Commercial Heavy-Duty) - Change

NOTICE

Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting and repair of the product. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Dispose of all fluids according to Local regulations and mandates.

NOTICE

Keep all parts clean from contaminants.

Contaminants may cause rapid wear and shortened component life.

Clean the cooling system and flush the cooling system before the recommended maintenance interval if the following conditions exist:

- The engine overheats frequently.
- Foaming of the coolant is observed.
- The oil has entered the cooling system and the coolant is contaminated.

WARNING

Pressurized System: Hot coolant can cause serious burns. To open the cooling system filler cap, stop the engine and wait until the cooling system components are cool. Loosen the cooling system pressure cap slowly in order to relieve the pressure.

1. Stop the engine and allow the engine to cool. Loosen the cooling system filler cap slowly in order to relieve any pressure. Remove the cooling system filler cap.

2. Open the drain cock or remove the drain plug (1) on the engine. Open the drain cock or remove the drain plug on the radiator.

Allow the coolant to drain.

NOTICE

Dispose of used engine coolant or recycle. Various methods have been proposed to reclaim used coolant for reuse in engine cooling systems. The full distillation procedure is the only method acceptable by Perkins to reclaim the coolant.
For information regarding the disposal and the recycling of used coolant, consult your Perkins dealer or your Perkins distributor.

Flush

1. Flush the cooling system with clean water in order to remove any debris.
2. Close the drain cock or install the drain plug in the engine. Close the drain cock or install the drain plug on the radiator.

NOTICE

Do not fill the cooling system faster than 5 L (1.3 US gal) per minute to avoid air locks. Cooling system air locks may result in engine damage.

3. Fill the cooling system with clean water. Install the cooling system filler cap.
4. Start and run the engine at low idle until the temperature reaches 49 to 66 °C (120 to 150 °F).
5. Stop the engine and allow the engine to cool. Loosen the cooling system filler cap slowly in order to relieve any pressure. Remove the cooling system filler cap. Open the drain cock or remove the drain plug on the engine. Open the drain cock or remove the drain plug on the radiator. Allow the water to drain. Flush the cooling system with clean water.

Fill

1. Close the drain cock or install the drain plug on the engine. Close the drain cock or install the drain plug on the radiator.

NOTICE

Do not fill the cooling system faster than 5 L (1.3 US gal) per minute to avoid air locks. Cooling system air locks may result in engine damage.

2. Fill the cooling system with Commercial Heavy-Duty Coolant. Add Supplemental Coolant Additive to the coolant. For the correct amount, refer to the Operation and Maintenance Manual, “Fluid Recommendations” topic (Maintenance Section) for more information on cooling system specifications. Do not install the cooling system filler cap.

3. Start and run the engine at low idle. Increase the engine rpm to high idle. Run the engine at high idle for one minute in order to purge the air from the cavities of the engine block. Decrease the engine speed to low idle. Stop the engine.
4. Check the coolant level. Maintain the coolant level within 13 mm (0.5 inch) below the bottom of the pipe for filling. Maintain the coolant level in the expansion bottle (if equipped) at the correct level.

5. Clean the cooling system filler cap and inspect the gasket. If the gasket is damaged, discard the old filler cap and install a new filler cap. If the gasket is not damaged, use a suitable pressurizing pump in order to pressure test the filler cap. The correct pressure is stamped on the face of the filler cap. If the filler cap does not retain the correct pressure, install a new filler cap.
6. Start the engine. Inspect the cooling system for leaks and for correct operating temperature.

Cooling System Coolant (ELC) - Change

NOTICE

Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting and repair of the product. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Dispose of all fluids according to Local regulations and mandates.
NOTICE
Keep all parts clean from contaminants.
Contaminants may cause rapid wear and shortened component life.

Clean the cooling system and flush the cooling system before the recommended maintenance interval if the following conditions exist:

- The engine overheats frequently.
- Foaming of the coolant is observed.
- The oil has entered the cooling system and the coolant is contaminated.
- The fuel has entered the cooling system and the coolant is contaminated.

Note: When the cooling system is cleaned, only clean water is needed when the ELC is drained and replaced.

Note: Inspect the water pump and the water temperature regulator after the cooling system has been drained. This is a good opportunity to replace the water pump, the water temperature regulator and the hoses, if necessary.

Drain

WARNING

Pressurized System: Hot coolant can cause serious burns. To open the cooling system filler cap, stop the engine and wait until the cooling system components are cool. Loosen the cooling system pressure cap slowly in order to relieve the pressure.

1. Stop the engine and allow the engine to cool. Loosen the cooling system filler cap slowly in order to relieve any pressure. Remove the cooling system filler cap.

2. Open the drain cock or remove the drain plug (1) on the engine. Open the drain cock or remove the drain plug on the radiator.

 Allow the coolant to drain.

 NOTICE

 Dispose of used engine coolant or recycle. Various methods have been proposed to reclaim used coolant for reuse in engine cooling systems. The full distillation procedure is the only method acceptable by Perkins to reclaim the coolant.

 For information regarding the disposal and the recycling of used coolant, consult your Perkins dealer or your Perkins distributor.

Flush

1. Flush the cooling system with clean water in order to remove any debris.

2. Close the drain cock or install the drain plug in the engine. Close the drain cock or install the drain plug on the radiator.

 NOTICE

 Do not fill the cooling system faster than 5 L (1.3 US gal) per minute to avoid air locks.

 Cooling system air locks may result in engine damage.

3. Fill the cooling system with clean water. Install the cooling system filler cap.
4. Start and run the engine at low idle until the temperature reaches 49 to 66 °C (120 to 150 °F).

5. Stop the engine and allow the engine to cool. Loosen the cooling system filler cap slowly in order to relieve any pressure. Remove the cooling system filler cap. Open the drain cock or remove the drain plug on the engine. Open the drain cock or remove the drain plug on the radiator. Allow the water to drain. Flush the cooling system with clean water.

Fill

1. Close the drain cock or install the drain plug on the engine. Close the drain cock or install the drain plug on the radiator.

NOTICE

Do not fill the cooling system faster than 5 L (1.3 US gal) per minute to avoid air locks. Cooling system air locks may result in engine damage.

2. Fill the cooling system with Extended Life Coolant (ELC). Refer to the Operation and Maintenance Manual, “Fluid Recommendations” topic (Maintenance Section) for more information on cooling system specifications. Do not install the cooling system filler cap.

3. Start and run the engine at low idle. Increase the engine rpm to high idle. Run the engine at high idle for one minute in order to purge the air from the cavities of the engine block. Decrease the engine speed to low idle. Stop the engine.

4. Check the coolant level. Maintain the coolant level within 13 mm (0.5 inch) below the bottom of the pipe for filling. Maintain the coolant level in the expansion bottle (if equipped) at the correct level.

5. Clean the cooling system filler cap and inspect the gasket. If the gasket is damaged, discard the old filler cap and install a new filler cap. If the gasket is not damaged, use a suitable pressurizing pump in order to pressure test the filler cap. The correct pressure is stamped on the face of the filler cap. If the filler cap does not retain the correct pressure, install a new filler cap.

6. Start the engine. Inspect the cooling system for leaks and for correct operating temperature.

Cooling System Coolant Extender (ELC) - Add

The Perkins Extended Life Coolant (ELC) does not need the frequent addition of Supplemental Coolant Additives (SCA) that are associated with conventional coolants. The Extender only needs to be added once.

Check the cooling system only when the engine is stopped and cool.

1. Loosen the cooling system filler cap slowly in order to relieve pressure. Remove the cooling system filler cap.

2. It may be necessary to drain enough coolant from the cooling system in order to add the Extender.

3. Add Extender according to the requirements for your engine's cooling system capacity. Refer to this Operation and Maintenance Manual, “Refill Capacities” in the Maintenance Section for the capacity of the cooling system for your engine. Refer to this Operation and Maintenance Manual, “Fluid Recommendations” information for the Perkins ELC Extender.

4. Clean the cooling system filler cap and inspect the gasket. If the gasket is damaged, discard the old filler cap and install a new filler cap. If the gasket is not damaged, use a suitable pressurizing pump in order to pressure test the filler cap. The correct pressure is stamped on the face of the filler cap. If the filler cap does not retain the correct pressure, install a new filler cap.
Cooling System Coolant Level - Check

Engines With a Coolant Recovery Tank

Note: The cooling system may not have been provided by Perkins. The procedure that follows is for typical cooling systems. Refer to the OEM information for the correct procedures.

Check the coolant level when the engine is stopped and cool.

1. Observe the coolant level in the coolant recovery tank. Maintain the coolant level to “COLD FULL” mark on the coolant recovery tank.

2. Loosen filler cap slowly in order to relieve any pressure. Remove the filler cap.

3. Pour the correct coolant mixture into the tank. Refer to the Operation and Maintenance Manual, “Refill Capacities and Recommendations” for information on the correct mixture and type of coolant. Refer to the Operation and Maintenance Manual, “Refill Capacities and Recommendations” for the cooling system capacity. Do not fill the coolant recovery tank above “COLD FULL” mark.

4. Clean filler cap and the receptacle. Reinstall the filler cap and inspect the cooling system for leaks.

Note: The coolant will expand as the coolant heats up during normal engine operation. The additional volume will be forced into the coolant recovery tank during engine operation. When the engine is stopped and cool, the coolant will return to the engine.

Engines Without a Coolant Recovery Tank

Check the coolant level when the engine is stopped and cool.

1. Remove the cooling system filler cap slowly in order to relieve pressure.

2. Maintain the coolant level within 13 mm (0.5 inch) of the bottom of the filler pipe. If the engine is equipped with a sight glass, maintain the coolant level to the correct level in the sight glass.

3. Clean the cooling system filler cap and inspect the gasket. If the gasket is damaged, discard the old filler cap and install a new filler cap. If the gasket is not damaged, use a suitable pressurizing pump in order to pressure test the filler cap. The correct pressure is stamped on the face of the filler cap. If the filler cap does not retain the correct pressure, install a new filler cap.

4. Inspect the cooling system for leaks.
Cooling System Supplemental Coolant Additive (SCA) - Test/Add

WARNING

Cooling system coolant additive contains alkali. To help prevent personal injury, avoid contact with the skin and the eyes. Do not drink cooling system coolant additive.

Test for SCA Concentration

Heavy-Duty Coolant/Antifreeze and SCA

NOTICE

Do not exceed the recommended six percent supplemental coolant additive concentration.

Use a Coolant Conditioner Test Kit in order to check the concentration of the SCA.

Add the SCA, If Necessary

NOTICE

Do not exceed the recommended amount of supplemental coolant additive concentration. Excessive supplemental coolant additive concentration can form deposits on the higher temperature surfaces of the cooling system, reducing the engine’s heat transfer characteristics. Reduced heat transfer could cause cracking of the cylinder head and other high temperature components. Excessive supplemental coolant additive concentration could also result in radiator tube blockage, overheating, and/or accelerated water pump seal wear. Never use both liquid supplemental coolant additive and the spin-on element (if equipped) at the same time. The use of those additives together could result in supplemental coolant additive concentration exceeding the recommended maximum.

Crankcase Breather (Canister) - Replace

NOTICE

Ensure that the engine is stopped before any servicing or repair is performed.

1. Place a container under the canister (2).
2. Clean the outside of the canister. Use a suitable tool in order to remove the canister.

1. Slowly loosen the cooling system filler cap in order to relieve the pressure. Remove the cooling system filler cap.

Note: Always discard drained fluids according to local regulations.

2. If necessary, drain some coolant from the cooling system into a suitable container in order to allow space for the extra SCA.

3. Add the correct amount of SCA. Refer to the Operation and Maintenance Manual, “Refill Capacities and Recommendations” for more information on SCA requirements.

4. Clean the cooling system filler cap and inspect the gasket. If the gasket is damaged, discard the old filler cap and install a new filler cap. If the gasket is not damaged, use a suitable pressurizing pump in order to pressure test the filler cap. The correct pressure is stamped on the face of the filler cap. If the filler cap does not retain the correct pressure, install a new filler cap.

WARNING

Pressurized System: Hot coolant can cause serious burns. To open the cooling system filler cap, stop the engine and wait until the cooling system components are cool. Loosen the cooling system pressure cap slowly in order to relieve the pressure.
Driven Equipment - Check

Refer to the OEM specifications for more information on the following maintenance recommendations for the driven equipment:

- Inspection
- Adjustment
- Lubrication
- Other maintenance recommendations

Perform any maintenance for the driven equipment which is recommended by the OEM.

3. Lubricate the O ring seal (1) on the new canister with clean engine lubricating oil. Install the new canister. Tighten the canister to 12 N·m (8 lb ft). Do not overtighten the canister.

4. Remove the container. Dispose of the old canister and any split oil in a safe place.

Engine - Clean

WARNING

Personal injury or death can result from high voltage.

Moisture can create paths of electrical conductivity.

Make sure that the electrical system is OFF. Lock out the starting controls and tag the controls “DO NOT OPERATE”.

NOTICE

Accumulated grease and oil on an engine is a fire hazard. Keep the engine clean. Remove debris and fluid spills whenever a significant quantity accumulates on the engine.

NOTICE

Failure to protect some engine components from washing may make your engine warranty invalid. Allow the engine to cool for one hour before washing the engine.

Periodic cleaning of the engine is recommended. Steam cleaning the engine will remove accumulated oil and grease. A clean engine provides the following benefits:

- Easy detection of fluid leaks
- Maximum heat transfer characteristics
- Ease of maintenance

Note: Caution must be used in order to prevent electrical components from being damaged by excessive water when the engine is cleaned. Pressure washers and steam cleaners should not be directed at any electrical connectors or the junction of cables into the rear of the connectors. Avoid electrical components such as the alternator, the starter, and the ECM. Protect the fuel injection pump from fluids in order to wash the engine.
Engine Air Cleaner Element (Dual Element) - Clean/Replace

NOTICE
Never run the engine without an air cleaner element installed. Never run the engine with a damaged air cleaner element. Do not use air cleaner elements with damaged pleats, gaskets or seals. Dirt entering the engine causes premature wear and damage to engine components. Air cleaner elements help to prevent air-borne debris from entering the air inlet.

NOTICE
Never service the air cleaner element with the engine running since this will allow dirt to enter the engine.

Servicing the Air Cleaner Elements

Note: The air filter system may not have been provided by Perkins. The procedure that follows is for a typical air filter system. Refer to the OEM information for the correct procedure.

If the air cleaner element becomes plugged, the air can split the material of the air cleaner element. Unfiltered air will drastically accelerate internal engine wear. Refer to the OEM information for the correct air cleaner elements for your application.

- Check the precleaner (if equipped) and the dust bowl daily for accumulation of dirt and debris. Remove any dirt and debris, as needed.
- Operating in dirty conditions may require more frequent service of the air cleaner element.
- The air cleaner element should be replaced at least one time per year. This replacement should be performed regardless of the number of cleanings.

Replace the dirty air cleaner elements with clean air cleaner elements. Before installation, the air cleaner elements should be thoroughly checked for tears and/or holes in the filter material. Inspect the gasket or the seal of the air cleaner element for damage. Maintain a supply of suitable air cleaner elements for replacement purposes.

Dual Element Air Cleaners

The dual element air cleaner contains a primary air cleaner element and a secondary air cleaner element.

The primary air cleaner element can be used up to six times if the element is properly cleaned and properly inspected. The primary air cleaner element should be replaced at least one time per year. This replacement should be performed regardless of the number of cleanings.

The secondary air cleaner element is not serviceable. Refer to the OEM information for instructions in order to replace the secondary air cleaner element.

When the engine is operating in environments that are dusty or dirty, air cleaner elements may require more frequent replacement.

Illustration 37
(1) Cover
(2) Primary air cleaner element
(3) Secondary air cleaner element
(4) Air inlet

1. Remove the cover. Remove the primary air cleaner element.
2. The secondary air cleaner element should be removed and discarded for every three cleanings of the primary air cleaner element.

Note: Refer to “Cleaning the Primary Air Cleaner Elements”.

3. Cover the air inlet with tape in order to keep dirt out.
4. Clean the inside of the air cleaner cover and body with a clean, dry cloth.
5. Remove the tape from the air inlet. Install the secondary air cleaner element. Install a primary air cleaner element that is new or cleaned.
6. Install the air cleaner cover.
7. Reset the air cleaner service indicator.
Cleaning the Primary Air Cleaner Elements

Refer to the OEM information in order to determine the number of times that the primary filter element can be cleaned. When the primary air cleaner element is cleaned, check for rips or tears in the filter material. The primary air cleaner element should be replaced at least one time per year. This replacement should be performed regardless of the number of cleanings.

NOTICE

Do not tap or strike the air cleaner element.

Do not wash the primary air cleaner element.

Use low pressure (207 kPa; 30 psi maximum) pressurised air or vacuum cleaning to clean the primary air cleaner element.

Take extreme care in order to avoid damage to the air cleaner elements.

Do not use air cleaner elements that have damaged pleats, gaskets or seals.

Refer to the OEM information in order to determine the number of times that the primary air cleaner element can be cleaned. Do not clean the primary air filter element more than three times. The primary air cleaner element must be replaced at least one time per year.

Cleaning the air filter element will not extend the life of the air filter element.

Visually inspect the primary air cleaner element before cleaning. Inspect air cleaner elements for damage to the pleats, the seals, the gaskets and the outer cover. Discard any damaged air cleaner element.

Two methods may be used in order to clean the primary air cleaner element:

- pressurized air
- Vacuum cleaning

Pressurized Air

WARNING

Personal injury can result from air pressure.

Personal injury can result without following proper procedure. When using pressure air, wear a protective face shield and protective clothing.

Maximum air pressure at the nozzle must be less than 205 kPa (30 psi) for cleaning purposes.

Pressurized air can be used to clean primary air cleaner elements that have not been cleaned more than three times. Use filtered, dry air with a maximum pressure of 207 kPa (30 psi). Pressurized air will not remove deposits of carbon and oil.

Illustration 38

g00281692

Note: When the primary air cleaner elements are cleaned, always begin with the clean side (inside) in order to force dirt particles toward the dirty side (outside).

Aim the air hose so that air flows along the length of the filter. Follow the direction of the paper pleats in order to prevent damage to the pleats. Do not aim the air directly at the face of the paper pleats.

Note: Refer to “Inspecting the Primary Air Cleaner Elements”.

Vacuum Cleaning

Vacuum cleaning is a good method for removing accumulated dirt from the dirty side (outside) of a primary air cleaner element. Vacuum cleaning is especially useful for cleaning primary air cleaner elements which require daily cleaning because of a dry, dusty environment.

Cleaning from the clean side (inside) with pressurized air is recommended prior to vacuum cleaning the dirty side (outside) of a primary air cleaner element.
Note: Refer to “Inspecting the Primary Air Cleaner Elements”.

Inspecting the Primary Air Cleaner Elements

Inspect the clean, dry primary air cleaner element. Use a 60 watt blue light in a dark room or in a similar facility. Place the blue light in the primary air cleaner element. Rotate the primary air cleaner element. Inspect the primary air cleaner element for tears and/or holes. Inspect the primary air cleaner element for light that may show through the filter material. If it is necessary in order to confirm the result, compare the primary air cleaner element to a new primary air cleaner element that has the same part number.

Do not use a primary air cleaner element that has any tears and/or holes in the filter material. Do not use a primary air cleaner element with damaged pleats, gaskets or seals. Discard damaged primary air cleaner elements.

Engine Air Cleaner Element (Single Element) - Inspect/Replace

Refer to Operation and Maintenance Manual, “Engine Air Cleaner Service Indicator-Inspect”.

NOTICE
Never run the engine without an air cleaner element installed. Never run the engine with a damaged air cleaner element. Do not use air cleaner elements with damaged pleats, gaskets or seals. Dirt entering the engine causes premature wear and damage to engine components. Air cleaner elements help to prevent airborne debris from entering the air inlet.

Engine Air Cleaner Service Indicator - Inspect

Some engines may be equipped with a different service indicator.

Some engines are equipped with a differential gauge for inlet air pressure. The differential gauge for inlet air pressure displays the difference in the pressure that is measured before the air cleaner element and the pressure that is measured after the air cleaner element. As the air cleaner element becomes dirty, the pressure differential rises. If your engine is equipped with a different type of service indicator, follow the OEM recommendations in order to service the air cleaner service indicator.

The service indicator may be mounted on the air cleaner element or in a remote location.

Observe the service indicator. The air cleaner element should be cleaned or the air cleaner element should be replaced when one of the following conditions occur:

- The yellow diaphragm enters the red zone.
- The red piston locks in the visible position.
Test the Service Indicator

Service indicators are important instruments.

- Check for ease of resetting. The service indicator should reset in less than three pushes.

- Check the movement of the yellow core when the engine is accelerated to the engine rated speed. The yellow core should latch at the greatest vacuum that is attained.

If the service indicator does not reset easily, or if the yellow core does not latch at the greatest vacuum, the service indicator should be replaced. If the new service indicator will not reset, the hole for the service indicator may be restricted.

The service indicator may need to be replaced frequently in environments that are severely dusty.

Engine Air Precleaner - Check/Clean

Illustration 41

Typical example
(1) Wing nut
(2) Cover
(3) Body

Remove wing nut (1) and cover (2). Check for an accumulation of dirt and debris in body (3). Clean the body, if necessary.

After cleaning the precleaner, install cover (2) and wing nut (1).

Note: When the engine is operated in dusty applications, more frequent cleaning is required.
Engine Crankcase Breather Element - Replace

The breather assembly

1. The O-ring for the top cover
2. The top cover
3. The O-ring for the filter element
4. The filter element
5. The breather body
6. The side cover

NOTICE
Ensure that the components of the breather assembly are installed in the correct position. If installed incorrectly, engine damage can result.

Note: There are several vent holes under the top cover (2) and under the side cover (6). Keep the area around the vent holes clean. Do not restrict the vent holes.

1. Remove all dirt and oil from the outside of the breather assembly. Remove the top cover (2) by turning the top cover counterclockwise until the lugs disengage. The breather element includes an O ring (3). Remove the breather element (4) by turning and lifting the element. Discard the element. Clean the inner surfaces of the breather body (5). Clean the top cover and inspect the O ring (1) in the top cover. If the O ring in the top cover is worn or damaged, replace the O ring.
2. Lubricate the O ring (3) in the new filter element (4) with clean engine lubricating oil. Carefully insert the element into the breather body (5). Lubricate the O ring (1) in the top cover with clean engine lubricating oil. Carefully insert the top cover (2) into the breather body (5). Rotate the top cover clockwise until the lugs are fully engaged.

Engine Mounts - Inspect

Note: The engine mounts may not have been supplied by Perkins. Refer to the OEM information for further information on the engine mounts and the correct bolt torque.

Inspect the engine mounts for deterioration and for correct bolt torque. Engine vibration can be caused by the following conditions:

- Incorrect mounting of the engine
- Deterioration of the engine mounts
- Loose engine mounts

Any engine mount that shows deterioration should be replaced. Refer to the OEM information for the recommended torques.

Engine Oil Level - Check

WARNING

Hot oil and hot components can cause personal injury. Do not allow hot oil or hot components to contact the skin.

1. Maintain the oil level between the “ADD” mark (Y) and the “FULL” mark (X) on the engine oil dipstick. Do not fill the crankcase above the “FULL” mark (X).

NOTICE

Operating your engine when the oil level is above the “FULL” mark could cause your crankshaft to dip into the oil. The air bubbles created from the crankshaft dipping into the oil reduces the oil’s lubricating characteristics and could result in the loss of power.

2. Remove the oil filler cap and add oil, if necessary. Clean the oil filler cap. Install the oil filler cap.

Engine Oil Sample - Obtain

The condition of the engine lubricating oil may be checked at regular intervals as part of a preventive maintenance program. Perkins include an oil sampling valve as an option. The oil sampling valve (if equipped) is included in order to regularly sample the engine lubricating oil. The oil sampling valve is positioned on the oil filter head or the oil sampling valve is positioned on the cylinder block.
Perkins recommends using a sampling valve in order to obtain oil samples. The quality and the consistency of the samples are better when a sampling valve is used. The location of the sampling valve allows oil that is flowing under pressure to be obtained during normal engine operation.

Obtain the Sample and the Analysis

WARNING

Hot oil and hot components can cause personal injury. Do not allow hot oil or hot components to contact the skin.

In order to help obtain the most accurate analysis, record the following information before an oil sample is taken:

- The date of the sample
- Engine model
- Engine number
- Service hours on the engine
- The number of hours that have accumulated since the last oil change
- The amount of oil that has been added since the last oil change

Ensure that the container for the sample is clean and dry. Also ensure that the container for the sample is clearly labelled.

To ensure that the sample is representative of the oil in the crankcase, obtain a warm, well mixed oil sample.

To avoid contamination of the oil samples, the tools and the supplies that are used for obtaining oil samples must be clean.

The sample can be checked for the following: the quality of the oil, the existence of any coolant in the oil, the existence of any ferrous metal particles in the oil, and the existence of any nonferrous metal particles in the oil.

Engine Oil and Filter - Change

WARNING

Hot oil and hot components can cause personal injury. Do not allow hot oil or hot components to contact the skin.

NOTICE

Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting and repair of the product. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Dispose of all fluids according to local regulations and mandates.

NOTICE

Keep all parts clean from contaminants.

Contaminants may cause rapid wear and shortened component life.

Do not drain the engine lubricating oil when the engine is cold. As the engine lubricating oil cools, suspended waste particles settle on the bottom of the oil pan. The waste particles are not removed with draining cold oil. Drain the oil pan with the engine stopped. Drain the oil pan with the oil warm. This draining method allows the waste particles that are suspended in the oil to be drained properly.

Failure to follow this recommended procedure will cause the waste particles to be recirculated through the engine lubrication system with the new oil.

Drain the Engine Lubricating Oil

Note: Ensure that the vessel that will be used is large enough to collect the waste oil.

After the engine has been run at the normal operating temperature, stop the engine. Use one of the following methods to drain the engine oil pan:
If the engine is equipped with a drain valve, turn the drain valve knob counterclockwise in order to drain the oil. After the oil has drained, turn the drain valve knob clockwise in order to close the drain valve.

If the engine is not equipped with a drain valve, remove the oil drain plug (1) in order to allow the oil to drain. If the engine is equipped with a shallow oil pan, remove the bottom oil drain plugs from both ends of the oil pan.

After the oil has drained, the oil drain plugs should be cleaned and installed. If necessary, replace the O ring seal. Tighten the drain plug to 34 N·m (25 lb ft).

Replace the Oil Filter

NOTICE

Perkins oil filters are manufactured to Perkins specifications. Use of an oil filter that is not recommended by Perkins could result in severe damage to the engine bearings, crankshaft, etc., as a result of the larger waste particles from unfiltered oil entering the engine lubricating system. Only use oil filters recommended by Perkins.

1. Remove the oil filter with a suitable tool.

Note: The following actions can be carried out as part of the preventive maintenance program.

2. Cut the oil filter open with a suitable tool. Break apart the pleats and inspect the oil filter for metal debris. An excessive amount of metal debris in the oil filter may indicate early wear or a pending failure.

Use a magnet to differentiate between the ferrous metals and the nonferrous metals that are found in the oil filter element. Ferrous metals may indicate wear on the steel and cast iron parts of the engine. Nonferrous metals may indicate wear on the aluminum parts, brass parts or bronze parts of the engine. Parts that may be affected include the following items: main bearings, rod bearings, and turbocharger bearings.

Due to normal wear and friction, it is not uncommon to find small amounts of debris in the oil filter.

3. Clean the sealing surface of the oil filter head (2). Ensure that the union is secure in the filter head.

4. Apply clean engine oil to the O ring seal (3) for the new oil filter.

NOTICE

Do not fill the oil filters with oil before installing them. This oil would not be filtered and could be contaminated. Contaminated oil can cause accelerated wear to engine components.

5. Install the oil filter. Tighten the oil filter to 12 N·m (8.8 lb ft). Do not overtighten the oil filter.

Note: Some oil filters may be installed horizontally. Refer to illustration 46. This type of oil filter assembly can be drained before the filter is removed. The torque for this drain plug (4) is 12 N·m (8 lb ft). If necessary, install a new O ring seal (5). Start at step 1 in order to remove the oil filter and install the oil filter.
Fill the Oil Pan

1. Remove the oil filler cap. Refer to this Operation and Maintenance Manual, “Fluid Recommendations” for more information on suitable oils. Fill the oil pan with the correct amount of new engine lubricating oil. Refer to this Operation and Maintenance Manual, “Refill Capacities” for more information on refill capacities.

2. Start the engine and run the engine at “LOW IDLE” for two minutes. Perform this procedure in order to ensure that the lubrication system has oil and that the oil filters are filled. Inspect the oil filter for oil leaks.

3. Stop the engine and allow the oil to drain back to the oil pan for a minimum of ten minutes.

4. Remove the engine oil level gauge in order to check the oil level. Maintain the oil level between the “MIN” and “MAX” marks on the engine oil level gauge.

Engine Valve Lash - Inspect/Adjust

This maintenance is recommended by Perkins as part of a lubrication and preventive maintenance schedule in order to help provide maximum engine life.

NOTICE

If equipped with an auxilliary oil filter system or a remote filter system, follow the OEM or the filter manufacturer’s recommendations. Under filling or over filling the crankcase with oil can cause engine damage.

NOTICE

Only qualified service personnel should perform this maintenance. Refer to the Service Manual or your authorized Perkins dealer or your Perkins distributor for the complete valve lash adjustment procedure.

Operation of Perkins engines with incorrect valve lash can reduce engine efficiency, and also reduce engine component life.

WARNING

Ensure that the engine can not be started while this maintenance is being performed. To help prevent possible injury, do not use the starting motor to turn the flywheel.

Hot engine components can cause burns. Allow additional time for the engine to cool before measuring/adjusting valve lash clearance.
Ensure that the engine is stopped before measuring the valve lash. The engine valve lash can be inspected and adjusted when the temperature of the engine is hot or cold.

Refer to Systems Operation/Testing and Adjusting, “Engine Valve Lash - Inspect/Adjust” for more information.

Fuel System - Prime

WARNING

Contact with high pressure fuel may cause fluid penetration and burn hazards. High pressure fuel spray may cause a fire hazard. Failure to follow these inspection, maintenance and service instructions may cause personal injury or death.

Refer to the Operation and Maintenance Manual, “General Hazard Information and High Pressure Fuel Lines” before adjustments and repairs are performed.

Note: Refer to Testing and Adjusting Manual, “Cleanliness of Fuel System Components” for detailed information on the standards of cleanliness that must be observed during ALL work on the fuel system.

Ensure that all adjustments and repairs are performed by authorized personnel that have had the correct training.

NOTICE

Do not crank the engine continuously for more than 30 seconds. Allow the starting motor to cool for two minutes before cranking the engine again.

If air enters the fuel system, the air must be purged from the fuel system before the engine can be started. Air can enter the fuel system when the following events occur:

- The fuel tank is empty or the fuel tank has been partially drained.
- The low pressure fuel lines are disconnected.
- A leak exists in the low pressure fuel system.
- The fuel filter has been replaced.

Hand Fuel Priming Pump

Use the following procedures in order to remove air from the fuel system:

1. Ensure that the fuel system is in working order. Check that the fuel supply valve (if equipped) is in the “ON” position.

2. Operate the fuel priming pump (1). Count the number of operations of the fuel priming pump. After 100 depressions of the fuel priming pump stop.

3. The engine fuel system should now be primed and the engine should now be able to start.

4. Operate the engine starter and crank the engine. After the engine has started, operate the engine at low idle for a minimum of five minutes, immediately after air has been removed from the fuel system.

Note: Operating the engine for this period of time will help ensure that the fuel system is free of air.

Note: Do not loosen the high pressure fuel line in order to purge air from the fuel system. This procedure is not required.
After the engine has stopped, you must wait for 60 seconds in order to allow the fuel pressure to be purged from the high pressure fuel lines before any service or repair is performed on the engine fuel lines. If necessary, perform minor adjustments. Repair any leaks from the low pressure fuel system and from the cooling, lubrication or air systems. Replace any high pressure fuel line that has leaked. Refer to Disassembly and assembly Manual, “Fuel Injection Lines - Install”.

If you inspect the engine in operation, always use the proper inspection procedure in order to avoid a fluid penetration hazard. Refer to Operation and Maintenance Manual, “General hazard Information”.

Electric Fuel Priming Pump

1. Ensure that the fuel system is in working order. Check that the fuel supply valve (if equipped) is in the “ON” position.

 NOTICE

 The electric fuel priming pump will operate for 90 seconds. If necessary the electric fuel priming pump can be stopped during the 90 seconds of operation, by operation of the switch.

2. Turn the keyswitch to the “RUN” position. Operate the switch for the electric priming pump. After 90 seconds of the electric fuel priming pump operation the fuel system will be primed and the electric fuel priming pump will turn off.

3. The engine should now be able to start.

4. Operate the engine starter and crank the engine. After the engine has started, operate the engine at low idle for a minimum of five minutes, immediately after air has been removed from the fuel system.

 Note: Operating the engine for this period of time will help ensure that the fuel system is free of air.

 Note: Do not loosen the high pressure fuel line in order to purge air from the fuel system. This procedure is not required.

After the engine has stopped, you must wait for 60 seconds in order to allow the fuel pressure to be purged from the high pressure fuel lines before any service or repair is performed on the engine fuel lines. If necessary, perform minor adjustments. Repair any leaks from the low pressure fuel system and from the cooling, lubrication or air systems. Replace any high pressure fuel line that has leaked. Refer to Disassembly and assembly Manual, “Fuel Injection Lines - Install”.

Fuel System Filter - Replace

WARNING

Fuel leaked or spilled onto hot surfaces or electrical components can cause a fire. To help prevent possible injury, turn the start switch off when changing fuel filters or water separator elements. Clean up fuel spills immediately.

Note: Refer to Testing and Adjusting Manual, “Cleanliness of Fuel System Components” for detailed information on the standards of cleanliness that must be observed during ALL work on the fuel system.

NOTICE

Ensure that the engine is stopped before any servicing or repair is performed.

After the engine has stopped, you must wait for 60 seconds in order to allow the fuel pressure to be purged from the high pressure fuel lines before any service or repair is performed on the engine fuel lines. If necessary, perform minor adjustments. Repair any leaks from the low pressure fuel system and from the cooling, lubrication or air systems. Replace any high pressure fuel line that has leaked. Refer to Disassembly and assembly Manual, “Fuel Injection Lines - Install”.

1. Ensure that the fuel supply valve (if equipped) is in the OFF position. Place a suitable container under the fuel filter in order to catch any fuel that might spill. Clean up any spilled fuel.
2. Clean the outside of the fuel filter. Use a suitable tool in order to remove the canister (1) from the engine and dispose of the canister in a safe place.

3. Ensure that dirt can not enter the new canister. Do not fill the canister with fuel before the canister is installed.

4. Lubricate the O ring seal with clean fuel oil and install the new canister. Do not use a tool in order to install the canister. Tighten the canister by hand.

5. Remove the container and dispose of the fuel in a safe place. If equipped, open the fuel supply valve.

Fuel System Primary Filter/Water Separator - Drain

WARNING

Fuel leaked or spilled onto hot surfaces or electrical components can cause a fire. To help prevent possible injury, turn the start switch off when changing fuel filters or water separator elements. Clean up fuel spills immediately.
Fuel System Primary Filter (Water Separator) Element - Replace

WARNING
Fuel leaked or spilled onto hot surfaces or electrical components can cause a fire. To help prevent possible injury, turn the start switch off when changing fuel filters or water separator elements. Clean up fuel spills immediately.

Note: Refer to Testing and Adjusting Manual, "Cleanliness of Fuel System Components" for detailed information on the standards of cleanliness that must be observed during ALL work on the fuel system.

NOTICE
Ensure that the engine is stopped before any servicing or repair is performed.

After the engine has stopped, you must wait for 60 seconds in order to allow the fuel pressure to be purged from the high pressure fuel lines before any service or repair is performed on the engine fuel lines. If necessary, perform minor adjustments. Repair any leaks from the low pressure fuel system and from the cooling, lubrication or air systems. Replace any high pressure fuel line that has leaked. Refer to Disassembly and assembly Manual, "Fuel Injection Lines - Install".

1. Turn the fuel supply valve (if equipped) to the OFF position before performing this maintenance.

2. Place a suitable container under the water separator in order to catch any fuel that might spill. Clean up any spilled fuel. Clean the outside of the water separator.

3. Install a suitable tube onto the drain (1). Open the drain (1). Allow the fluid to drain into the container. Remove the tube.

4. Tighten the drain (1) by hand pressure only.

5. If equipped, remove the wiring harness from the sensor on the bottom of the glass bowl.

6. Hold the glass bowl (3) and remove the screw (2). Remove the glass bowl (3) from the canister (4).

7. Use a suitable tool in order to remove the canister (4). Discard the old seals (5 and 6) and the canister in a safe place.

8. Clean the glass bowl (3).
Fuel Tank Water and Sediment - Drain

NOTICE

Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting, and repair of the product. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Dispose of all fluids according to local regulations and mandates.

Fuel Tank

Fuel quality is critical to the performance and to the service life of the engine. Water in the fuel can cause excessive wear to the fuel system.

Water can be introduced into the fuel tank when the fuel tank is being filled.

Condensation occurs during the heating and cooling of fuel. The condensation occurs as the fuel passes through the fuel system and the fuel returns to the fuel tank. This causes water to accumulate in fuel tanks. Draining the fuel tank regularly and obtaining fuel from reliable sources can help to eliminate water in the fuel.

Drain the Water and the Sediment

Fuel tanks should contain some provision for draining water and draining sediment from the bottom of the fuel tanks.

Open the drain valve on the bottom of the fuel tank in order to drain the water and the sediment. Close the drain valve.

Check the fuel daily. Allow five minutes after the fuel tank has been filled before draining water and sediment from the fuel tank.

Fill the fuel tank after operating the engine in order to drive out moist air. This will help prevent condensation. Do not fill the tank to the top. The fuel expands as the fuel gets warm. The tank may overflow.
Some fuel tanks use supply pipes that allow water and sediment to settle below the end of the fuel supply pipe. Some fuel tanks use supply lines that take fuel directly from the bottom of the tank. If the engine is equipped with this system, regular maintenance of the fuel system filter is important.

Fuel Storage Tanks

Drain the water and the sediment from the fuel storage tank at the following intervals:

- Weekly
- Service intervals
- Refill of the tank

This will help prevent water or sediment from being pumped from the storage tank into the engine fuel tank.

If a bulk storage tank has been refilled or moved recently, allow adequate time for the sediment to settle before filling the engine fuel tank. Internal baffles in the bulk storage tank will also help trap sediment. Filtering fuel that is pumped from the storage tank helps to ensure the quality of the fuel. When possible, water separators should be used.

Hoses and Clamps - Inspect/Replace

Replace hoses that are cracked or soft. Tighten any loose clamps.

Check for the following conditions:

- End fittings that are damaged or leaking
- Outer covering that is chafed or cut
- Exposed wire that is used for reinforcement
- Outer covering that is ballooning locally
- Flexible part of the hose that is kinked or crushed
- Armoring that is embedded in the outer covering

A constant torque hose clamp can be used in place of any standard hose clamp. Ensure that the constant torque hose clamp is the same size as the standard clamp.

Due to extreme temperature changes, the hose will harden. Hardening of the hoses will cause hose clamps to loosen. This can result in leaks. A constant torque hose clamp will help to prevent loose hose clamps.

Each installation application can be different. The differences depend on the following factors:

- Type of hose
- Type of fitting material
- Anticipated expansion and contraction of the hose
- Anticipated expansion and contraction of the fittings

Replace the Hoses and the Clamps

Refer to the OEM information for further information on removing and replacing fuel hoses (if equipped).

The coolant system and the hoses for the coolant system are not usually supplied by Perkins. The following text describes a typical method of replacing coolant hoses. Refer to the OEM information for further information on the coolant system and the hoses for the coolant system.

WARNING

Pressurized System: Hot coolant can cause serious burns. To open the cooling system filler cap, stop the engine and wait until the cooling system components are cool. Loosen the cooling system pressure cap slowly in order to relieve the pressure.
1. Stop the engine. Allow the engine to cool.

2. Loosen the cooling system filler cap slowly in order to relieve any pressure. Remove the cooling system filler cap.

Note: Drain the coolant into a suitable, clean container. The coolant can be reused.

3. Drain the coolant from the cooling system to a level that is below the hose that is being replaced.

4. Remove the hose clamps.

5. Disconnect the old hose.

6. Replace the old hose with a new hose.

7. Install the hose clamps with a torque wrench.

Note: For the correct coolant, see this Operation and Maintenance Manual, “Fluid Recommendations”.

8. Refill the cooling system. Refer to the OEM information for further information on refilling the cooling system.

9. Clean the cooling system filler cap. Inspect the cooling system filler cap's seals. Replace the cooling system filler cap if the seals are damaged. Install the cooling system filler cap.

10. Start the engine. Inspect the cooling system for leaks.

Radiator - Clean

The radiator is not usually supplied by Perkins. The following text describes a typical cleaning procedure for the radiator. Refer to the OEM information for further information on cleaning the radiator.

Note: Adjust the frequency of cleaning according to the effects of the operating environment.

Inspect the radiator for these items: Damaged fins, corrosion, dirt, grease, insects, leaves, oil, and other debris. Clean the radiator, if necessary.

WARNING

Personal injury can result from air pressure.

Personal injury can result without following proper procedure. When using pressure air, wear a protective face shield and protective clothing.

Maximum air pressure at the nozzle must be less than 205 kPa (30 psi) for cleaning purposes.

Pressurized air is the preferred method for removing loose debris. Direct the air in the opposite direction to the fan’s air flow. Hold the nozzle approximately 6 mm (0.25 inch) away from the radiator fins. Slowly move the air nozzle in a direction that is parallel with the radiator tube assembly. This will remove debris that is between the tubes.

Pressurized water may also be used for cleaning. The maximum water pressure for cleaning purposes must be less than 275 kPa (40 psi). Use pressurized water in order to soften mud. Clean the core from both sides.

Use a degreaser and steam for removal of oil and grease. Clean both sides of the core. Wash the core with detergent and hot water. Thoroughly rinse the core with clean water.

If the radiator is blocked internally, refer to the OEM Manual for information regarding flushing the cooling system.

After cleaning the radiator, start the engine. Allow the engine to operate at low idle speed for three to five minutes. Accelerate the engine to high idle. This will help in the removal of debris and the drying of the core. Slowly reduce the engine speed to low idle and then stop the engine. Use a light bulb behind the core in order to inspect the core for cleanliness. Repeat the cleaning, if necessary.

Inspect the fins for damage. Bent fins may be opened with a “comb”. Inspect these items for good condition: Welds, mounting brackets, air lines, connections, clamps, and seals. Make repairs, if necessary.

Severe Service Application - Check

Severe service is the application of an engine that exceeds the current published standards for that engine. Perkins maintains standards for the following engine parameters:
Starting Motor - Inspect

- Performance such as power range, speed range, and fuel consumption
- Fuel quality
- Operational Altitude
- Maintenance intervals
- Oil selection and maintenance
- Coolant type and maintenance
- Environmental qualities
- Installation
- The temperature of the fluid in the engine

Refer to the standards for the engine or consult your Perkins dealer or your Perkins distributor in order to determine if the engine is operating within the defined parameters.

Severe service operation can accelerate component wear. Engines that operate under severe conditions may need more frequent maintenance intervals in order to ensure maximum reliability and retention of full service life.

Due to individual applications, it is not possible to identify all of the factors which can contribute to severe service operation. Consult your Perkins dealer or your Perkins distributor for the unique maintenance that is necessary for the engine.

The operating environment, incorrect operating procedures and incorrect maintenance procedures can be factors which contribute to a severe service application.

Environmental Factors

Ambient temperatures – The engine may be exposed to extended operation in extremely cold environments or hot environments. Valve components can be damaged by carbon buildup if the engine is frequently started and stopped in very cold temperatures. Extremely hot intake air reduces engine performance.

Quality of the air – The engine may be exposed to extended operation in an environment that is dirty or dusty, unless the equipment is cleaned regularly. Mud, dirt and dust can encase components. Maintenance can be very difficult. The buildup can contain corrosive chemicals.

Buildup – Compounds, elements, corrosive chemicals and salt can damage some components.

Altitude – Problems can arise when the engine is operated at altitudes that are higher than the intended settings for that application. Necessary adjustments should be made.

Incorrect Operating Procedures

- Extended operation at low idle
- Frequent hot shutdowns
- Operating at excessive loads
- Operating at excessive speeds
- Operating outside the intended application

Incorrect Maintenance Procedures

- Extending the maintenance intervals
- Failure to use recommended fuel, lubricants and coolant/antifreeze

Starting Motor - Inspect

Perkins recommends a scheduled inspection of the starting motor. If the starting motor fails, the engine may not start in an emergency situation.

Check the starting motor for correct operation. Check the electrical connections and clean the electrical connections. Refer to the Systems Operation, Testing and Adjusting Manual, “Electric Starting System - Test” for more information on the checking procedure and for specifications or consult your Perkins dealer or your Perkins distributor for assistance.

Turbocharger - Inspect

A regular visual inspection of the turbocharger is recommended. On some engines, the fumes from the crankcase are returned to the air inlet system. Therefore, by-products from oil and from combustion can collect in the turbocharger compressor housing. Over time, this buildup can contribute to loss of engine power, increased black smoke and overall loss of engine efficiency.
If the turbocharger fails during engine operation, damage to the turbocharger compressor wheel and/or to the engine may occur. Damage to the turbocharger compressor wheel can cause additional damage to the pistons, the valves, and the cylinder head.

NOTICE
Turbocharger bearing failures can cause large quantities of oil to enter the air intake and exhaust systems. Loss of engine lubricant can result in serious engine damage.

Minor leakage of oil into a turbocharger under extended low idle operation should not cause problems as long as a turbocharger bearing failure has not occurred.

When a turbocharger bearing failure is accompanied by a significant engine performance loss (exhaust smoke or engine rpm up at no load), do not continue engine operation until the turbocharger is renewed.

A visual inspection of the turbocharger can minimize unscheduled downtime. A visual inspection of the turbocharger can also reduce the chance for potential damage to other engine parts.

Removal and Installation

Note: The turbochargers that are supplied are nonserviceable.

For options regarding the removal, installation, and replacement, consult your Perkins dealer or your Perkins distributor. Refer to the Disassembly and Assembly Manual, "Turbocharger - Remove and Turbocharger - Install" for further information.

Inspecting

NOTICE
The compressor housing for the turbocharger must not be removed from the turbocharger for cleaning.

The actuator linkage is connected to the compressor housing. If the actuator linkage is moved or disturbed the engine may not comply with emissions legislation.

1. Remove the pipe from the turbocharger exhaust outlet and remove the air intake pipe to the turbocharger. Visually inspect the piping for the presence of oil. Clean the interior of the pipes in order to prevent dirt from entering during reassembly.

2. Check for the presence of oil. If oil is leaking from the back side of the compressor wheel, there is a possibility of a failed turbocharger oil seal.

 The presence of oil may be the result of extended engine operation at low idle. The presence of oil may also be the result of a restriction of the line for the intake air (clogged air filters), which causes the turbocharger to slobber.

3. Inspect the bore of the housing of the turbine outlet for corrosion.

4. Fasten the air intake pipe and the exhaust outlet pipe to the turbocharger housing.

Walk-Around Inspection

Inspect the Engine for Leaks and for Loose Connections

A walk-around inspection should only take a few minutes. When the time is taken to perform these checks, costly repairs and accidents can be avoided.

For maximum engine service life, make a thorough inspection of the engine compartment before starting the engine. Look for items such as oil leaks or coolant leaks, loose bolts, worn belts, loose connections and trash buildup. Make repairs, as needed:

- The guards must be in the correct place. Repair damaged guards or replace missing guards.
- Wipe all caps and plugs before the engine is serviced in order to reduce the chance of system contamination.

NOTICE
For any type of leak (coolant, lube, or fuel) clean up the fluid. If leaking is observed, find the source and correct the leak. If leaking is suspected, check the fluid levels more often than recommended until the leak is found or fixed, or until the suspicion of a leak is proved to be unwarranted.

NOTICE
Accumulated grease and/or oil on an engine is a fire hazard. Remove the accumulated grease and oil. Refer to this Operation and Maintenance Manual, "Engine - Clean" for more information.
• Ensure that the cooling system hoses are correctly clamped and that the cooling system hoses are tight. Check for leaks. Check the condition of all pipes.

• Inspect the water pump for coolant leaks.

Note: The water pump seal is lubricated by the coolant in the cooling system. It is normal for a small amount of leakage to occur as the engine cools down and the parts contract.

Excessive coolant leakage may indicate the need to replace the water pump. Remove the water pump. Refer to Disassembly and Assembly, “Water Pump - Remove and Install”. For more information, consult your Perkins dealer or your Perkins distributor.

• Inspect the lubrication system for leaks at the front crankshaft seal, the rear crankshaft seal, the oil pan, the oil filters and the rocker cover.

• Inspect the piping for the air intake system and the elbows for cracks and for loose clamps. Ensure that hoses and tubes are not contacting other hoses, tubes, wiring harnesses, etc.

• Ensure that the areas around the rotating parts are clear.

• Inspect the alternator belts and any accessory drive belts for cracks, breaks or other damage.

• Inspect the wiring harness for damage.

Belts for multiple groove pulleys must be replaced as matched sets. If only one belt is replaced, the belt will carry more load than the belts that are not replaced. The older belts are stretched. The additional load on the new belt could cause the belt to break.

High Pressure Fuel Lines

WARNING

Contact with high pressure fuel may cause fluid penetration and burn hazards. High pressure fuel spray may cause a fire hazard. Failure to follow these inspection, maintenance and service instructions may cause personal injury or death.

After the engine has stopped, you must wait for 60 seconds in order to allow the fuel pressure to be purged from the high pressure fuel lines before any service or repair is performed on the engine fuel lines. If necessary, perform minor adjustments. Repair any leaks from the low pressure fuel system and from the cooling, lubrication or air systems. Replace any high pressure fuel line that has leaked. Refer to Disassembly and assembly Manual, “Fuel Injection Lines - Install”.

If you inspect the engine in operation, always use the proper inspection procedure in order to avoid a fluid penetration hazard. Refer to Operation and Maintenance Manual, “General hazard Information”.

Visually inspect the high pressure fuel lines for damage or signs of fuel leakage. Replace any damaged high pressure fuel lines or high pressure fuel lines that have leaked.

Ensure that all clips on the high pressure fuel lines are in place and that the clips are not loose.

• Inspect the rest of the fuel system for leaks. Look for loose fuel line clamps.

• Drain the water and the sediment from the fuel tank on a daily basis in order to ensure that only clean fuel enters the fuel system.

• Inspect the wiring and the wiring harnesses for loose connections and for worn wires or frayed wires. Check for any loose tie-wraps or missing tie-wraps.

• Inspect the ground strap for a good connection and for good condition.

• Disconnect any battery chargers that are not protected against the current drain of the starting motor. Check the condition and the electrolyte level of the batteries, unless the engine is equipped with a maintenance free battery.

• Check the condition of the gauges. Replace any gauges that are cracked. Replace any gauge that can not be calibrated.

Water Pump - Inspect

A failed water pump may cause severe engine overheating problems that could result in the following conditions:

• Cracks in the cylinder head
- A piston seizure
- Other potential damage to the engine

Note: The water pump seal is lubricated by the coolant in the cooling system. It is normal for a small amount of leakage to occur as the engine cools down and parts contract.

Visually inspect the water pump for leaks. The water pump is not a serviceable item. In order to install a new water pump, refer to the Disassembly and Assembly Manual, "Water Pump - Remove and Install".
Warranty Section

Warranty Information

Emissions Warranty Information

This engine may be certified to comply with exhaust emission standards and gaseous emission standards that are prescribed by the law at the time of manufacture, and this engine may be covered by an Emissions Warranty. Consult your authorized Perkins dealer or your authorized Perkins distributor in order to determine if your engine is emissions certified and if your engine is subject to an Emissions Warranty.
Index

A
After Starting Engine 38
After Stopping Engine 40
Aftercooler Core - Clean/Test 60
Aftercooler Core - Inspect 60
Alternator - Inspect 61
Alternator and Fan Belts - Inspect 61
Alternator and Fan Belts - Replace 61

B
Battery - Replace 61
Battery Electrolyte Level - Check 62
Battery or Battery Cable - Disconnect 62
Before Starting Engine 13, 36
Burn Prevention .. 8
Batteries .. 8
Coolant ... 8
Oils .. 8

C
Cold Weather Operation 42
Hints for Cold Weather Operation 42
Idling the Engine 43
Recommendations for Coolant Warm Up 43
Recommendations for the Coolant 42
Viscosity of the Engine Lubrication Oil 42
Cold Weather Starting 36
Cooling System Coolant (Commercial Heavy-Duty) - Change ... 63
Drain .. 63
Fill .. 64
Flush .. 64
Cooling System Coolant (ELC) - Change 64
Drain .. 65
Fill .. 66
Flush .. 65
Cooling System Coolant Extender (ELC) - Add .. 66
Cooling System Coolant Level - Check 67
Engines With a Coolant Recovery Tank 67
Engines Without a Coolant Recovery Tank 67
Cooling System Supplemental Coolant Additive (SCA) - Test/Add ... 68
Add the SCA, If Necessary 68
Test for SCA Concentration 68
Crankcase Breather (Canister) - Replace 68
Crushing Prevention and Cutting Prevention 11

D
Diagnostic Flash Code Retrieval 32
"Diagnostic" Lamp 32
Diagnostic Lamp .. 34

Driven Equipment - Check 69

E
Electrical System .. 14
Grounding Practices 14
Emergency Stopping 40
Emissions Certification Film 21
Label for compliant engines 21
Label for engines that do not comply with emissions .. 22
Emissions Warranty Information 90
Engine - Clean .. 69
Engine Air Cleaner Element (Dual Element) - Clean/Replace .. 70
Cleaning the Primary Air Cleaner Elements 71
Servicing the Air Cleaner Elements 70
Engine Air Cleaner Element (Single Element) - Inspect/Replace 72
Engine Air Cleaner Service Indicator - Inspect 72
Test the Service Indicator 73
Engine Air Precleaner - Check/Clean 73
Engine Crankcase Breather Element - Replace 74
Engine Description 18
Electronic Engine Features 19
Engine Cooling and Lubrication 19
Engine Diagnostics 19
Engine Specifications 18
Engine Diagnostics 32
Engine Electronics 15
Engine Lifting ... 23
Engine Mounts - Inspect 75
Engine Oil and Filter - Change 76
Drain the Engine Lubricating Oil 76
Fill the Oil Pan .. 78
Replace the Oil Filter 77
Engine Oil Level - Check 75
Engine Oil Sample - Obtain 75
Obtain the Sample and the Analysis 76
Engine Operation .. 39
Engine Operation with Active Diagnostic Codes 34
Engine Operation with Intermittent Diagnostic Codes ... 35
Engine Starting ... 13, 36
Engine Stopping .. 14, 40
Engine Storage ... 23
Engine Valve Lash - Inspect/Adjust 78

F
Fault Logging ... 34
Features and Controls 26
Fire Prevention and Explosion Prevention 9
Fire Extinguisher 10
Lines, Tubes and Hoses 10
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid Recommendations</td>
<td>46</td>
</tr>
<tr>
<td>Cooling System Specifications</td>
<td>53</td>
</tr>
<tr>
<td>ELC Cooling System Maintenance</td>
<td>55</td>
</tr>
<tr>
<td>Engine Oil</td>
<td>47</td>
</tr>
<tr>
<td>Fuel Specifications</td>
<td>50</td>
</tr>
<tr>
<td>General Lubricant Information</td>
<td>46</td>
</tr>
<tr>
<td>Foreword</td>
<td>4</td>
</tr>
<tr>
<td>California Proposition 65 Waming</td>
<td>4</td>
</tr>
<tr>
<td>Literature Information</td>
<td>4</td>
</tr>
<tr>
<td>Maintenance</td>
<td>4</td>
</tr>
<tr>
<td>Maintenance Intervals</td>
<td>4</td>
</tr>
<tr>
<td>Operation</td>
<td>4</td>
</tr>
<tr>
<td>Overhaul</td>
<td>4</td>
</tr>
<tr>
<td>Safety</td>
<td>4</td>
</tr>
<tr>
<td>Fuel and the Effect from Cold Weather</td>
<td>44</td>
</tr>
<tr>
<td>Fuel Conservation Practices</td>
<td>39</td>
</tr>
<tr>
<td>Fuel Related Components in Cold Weather</td>
<td>45</td>
</tr>
<tr>
<td>Fuel Filters</td>
<td>45</td>
</tr>
<tr>
<td>Fuel Heaters</td>
<td>45</td>
</tr>
<tr>
<td>Fuel Tanks</td>
<td>45</td>
</tr>
<tr>
<td>Fuel System - Prime</td>
<td>79</td>
</tr>
<tr>
<td>Electric Fuel Priming Pump</td>
<td>80</td>
</tr>
<tr>
<td>Hand Fuel Priming Pump</td>
<td>79</td>
</tr>
<tr>
<td>Fuel System Filter - Replace</td>
<td>80</td>
</tr>
<tr>
<td>Fuel System Primary Filter/Water Separator - Element - Replace</td>
<td>82</td>
</tr>
<tr>
<td>Fuel System Primary Filter/Water Separator - Drain</td>
<td>81</td>
</tr>
<tr>
<td>Fuel Tank Water and Sediment - Drain</td>
<td>83</td>
</tr>
<tr>
<td>Fuel Storage Tanks</td>
<td>84</td>
</tr>
<tr>
<td>Gaudes and Indicators</td>
<td>25</td>
</tr>
<tr>
<td>General Hazard Information</td>
<td>7</td>
</tr>
<tr>
<td>Containing Fluid Spillage</td>
<td>8</td>
</tr>
<tr>
<td>Fluid Penetration</td>
<td>7</td>
</tr>
<tr>
<td>Pressure Air and Water</td>
<td>7</td>
</tr>
<tr>
<td>General Information</td>
<td>16</td>
</tr>
<tr>
<td>High Pressure Fuel Lines</td>
<td>11</td>
</tr>
<tr>
<td>Hoses and Clamps - Inspect/Replace</td>
<td>84</td>
</tr>
<tr>
<td>Replace the Hoses and the Clamps</td>
<td>84</td>
</tr>
<tr>
<td>Important Safety Information</td>
<td>2</td>
</tr>
<tr>
<td>Lifting and Storage</td>
<td>23</td>
</tr>
<tr>
<td>Maintenance Interval Schedule</td>
<td>59</td>
</tr>
<tr>
<td>Maintenance Section</td>
<td>46</td>
</tr>
<tr>
<td>Model View Illustrations</td>
<td>17</td>
</tr>
<tr>
<td>Model Views</td>
<td>17</td>
</tr>
<tr>
<td>Monitoring System</td>
<td>26–27</td>
</tr>
<tr>
<td>Programmable Options and Systems</td>
<td>26</td>
</tr>
<tr>
<td>Operation</td>
<td>23</td>
</tr>
<tr>
<td>Mounting and Dismounting</td>
<td>11</td>
</tr>
<tr>
<td>Plate Locations and Film Locations</td>
<td>20</td>
</tr>
<tr>
<td>Serial Number Plate (1)</td>
<td>20</td>
</tr>
<tr>
<td>Product Identification Information</td>
<td>20</td>
</tr>
<tr>
<td>Product Information Section</td>
<td>16</td>
</tr>
<tr>
<td>Radiator - Clean</td>
<td>85</td>
</tr>
<tr>
<td>Reference Numbers</td>
<td>20</td>
</tr>
<tr>
<td>Record for Reference</td>
<td>20</td>
</tr>
<tr>
<td>Refill Capacities</td>
<td>46</td>
</tr>
<tr>
<td>Cooling System</td>
<td>46</td>
</tr>
<tr>
<td>Lubrication System</td>
<td>46</td>
</tr>
<tr>
<td>Safety Messages</td>
<td>5</td>
</tr>
<tr>
<td>(1) Universal Warning</td>
<td>5</td>
</tr>
<tr>
<td>(2) Ether</td>
<td>6</td>
</tr>
<tr>
<td>(3) Hand (High Pressure)</td>
<td>6</td>
</tr>
<tr>
<td>Safety Section</td>
<td>5</td>
</tr>
<tr>
<td>Self-Diagnostics</td>
<td>32</td>
</tr>
<tr>
<td>Sensors and Electrical Components</td>
<td>27</td>
</tr>
<tr>
<td>Coolant Temperature Sensor 1</td>
<td>30</td>
</tr>
<tr>
<td>Crankshaft Position Sensor 7</td>
<td>30</td>
</tr>
<tr>
<td>Engine Oil Pressure Sensor 6</td>
<td>30</td>
</tr>
<tr>
<td>Failure of Sensors</td>
<td>29</td>
</tr>
<tr>
<td>Fuel Pressure Sensor 4</td>
<td>30</td>
</tr>
<tr>
<td>Inlet Air Pressure Sensor 3</td>
<td>30</td>
</tr>
<tr>
<td>Inlet Air Temperature Sensor 2</td>
<td>30</td>
</tr>
<tr>
<td>Programmable Monitoring System (PMS)</td>
<td>29</td>
</tr>
<tr>
<td>Secondary Position Sensor 8</td>
<td>30</td>
</tr>
<tr>
<td>Sensor Locations</td>
<td>27</td>
</tr>
<tr>
<td>Severe Service Application - Check</td>
<td>85</td>
</tr>
<tr>
<td>Environmental Factors</td>
<td>86</td>
</tr>
<tr>
<td>Incorrect Maintenance Procedures</td>
<td>86</td>
</tr>
<tr>
<td>Incorrect Operating Procedures</td>
<td>86</td>
</tr>
<tr>
<td>Starting Motor - Inspect</td>
<td>86</td>
</tr>
</tbody>
</table>
Starting the Engine .. 36
Starting the Engine .. 36
Starting with Jump Start Cables 37
Stopping the Engine .. 40

T

Table of Contents... 3
Turbocharger - Inspect .. 86
 Inspecting... 87
 Removal and Installation.................................... 87

W

Walk-Around Inspection .. 87
 High Pressure Fuel Lines................................... 88
 Inspect the Engine for Leaks and for Loose
 Connections ... 87
Warranty Information ... 90
Warranty Section ... 90
Water Pump - Inspect.. 88
Welding on Engines with Electronic Controls 16
Product and Dealer Information

Note: For product identification plate locations, see the section “Product Identification Information” in the Operation and Maintenance Manual.

Delivery Date: ____________________

Product Information

Model: ______________________________

Product Identification Number: ______________________________

Engine Serial Number: ______________________________

Transmission Serial Number: ______________________________

Generator Serial Number: ______________________________

Attachment Serial Numbers: ______________________________

Attachment Information: ______________________________

Customer Equipment Number: ______________________________

Dealer Equipment Number: ______________________________

Dealer Information

Name: ______________________________ Branch: ______________________________

Address: __

__

<table>
<thead>
<tr>
<th>Dealer Contact</th>
<th>Phone Number</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parts:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>